You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							156 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
	
	
							156 lines
						
					
					
						
							5.8 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import os
 | 
						|
import gc
 | 
						|
import math
 | 
						|
import time
 | 
						|
import ctypes
 | 
						|
import numpy as np
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
from cereal import messaging
 | 
						|
from cereal.messaging import PubMaster, SubMaster
 | 
						|
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
 | 
						|
from openpilot.common.swaglog import cloudlog
 | 
						|
from openpilot.common.params import Params
 | 
						|
from openpilot.common.realtime import set_realtime_priority
 | 
						|
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
 | 
						|
from openpilot.selfdrive.modeld.models.commonmodel_pyx import sigmoid
 | 
						|
 | 
						|
CALIB_LEN = 3
 | 
						|
REG_SCALE = 0.25
 | 
						|
MODEL_WIDTH = 1440
 | 
						|
MODEL_HEIGHT = 960
 | 
						|
OUTPUT_SIZE = 84
 | 
						|
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
 | 
						|
MODEL_PATHS = {
 | 
						|
  ModelRunner.SNPE: Path(__file__).parent / 'models/dmonitoring_model_q.dlc',
 | 
						|
  ModelRunner.ONNX: Path(__file__).parent / 'models/dmonitoring_model.onnx'}
 | 
						|
 | 
						|
class DriverStateResult(ctypes.Structure):
 | 
						|
  _fields_ = [
 | 
						|
    ("face_orientation", ctypes.c_float*3),
 | 
						|
    ("face_position", ctypes.c_float*3),
 | 
						|
    ("face_orientation_std", ctypes.c_float*3),
 | 
						|
    ("face_position_std", ctypes.c_float*3),
 | 
						|
    ("face_prob", ctypes.c_float),
 | 
						|
    ("_unused_a", ctypes.c_float*8),
 | 
						|
    ("left_eye_prob", ctypes.c_float),
 | 
						|
    ("_unused_b", ctypes.c_float*8),
 | 
						|
    ("right_eye_prob", ctypes.c_float),
 | 
						|
    ("left_blink_prob", ctypes.c_float),
 | 
						|
    ("right_blink_prob", ctypes.c_float),
 | 
						|
    ("sunglasses_prob", ctypes.c_float),
 | 
						|
    ("occluded_prob", ctypes.c_float),
 | 
						|
    ("ready_prob", ctypes.c_float*4),
 | 
						|
    ("not_ready_prob", ctypes.c_float*2)]
 | 
						|
 | 
						|
class DMonitoringModelResult(ctypes.Structure):
 | 
						|
  _fields_ = [
 | 
						|
    ("driver_state_lhd", DriverStateResult),
 | 
						|
    ("driver_state_rhd", DriverStateResult),
 | 
						|
    ("poor_vision_prob", ctypes.c_float),
 | 
						|
    ("wheel_on_right_prob", ctypes.c_float)]
 | 
						|
 | 
						|
class ModelState:
 | 
						|
  inputs: dict[str, np.ndarray]
 | 
						|
  output: np.ndarray
 | 
						|
  model: ModelRunner
 | 
						|
 | 
						|
  def __init__(self):
 | 
						|
    assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
 | 
						|
    self.output = np.zeros(OUTPUT_SIZE, dtype=np.float32)
 | 
						|
    self.inputs = {
 | 
						|
      'input_img': np.zeros(MODEL_HEIGHT * MODEL_WIDTH, dtype=np.uint8),
 | 
						|
      'calib': np.zeros(CALIB_LEN, dtype=np.float32)}
 | 
						|
 | 
						|
    self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.DSP, True, None)
 | 
						|
    self.model.addInput("input_img", None)
 | 
						|
    self.model.addInput("calib", self.inputs['calib'])
 | 
						|
 | 
						|
  def run(self, buf:VisionBuf, calib:np.ndarray) -> tuple[np.ndarray, float]:
 | 
						|
    self.inputs['calib'][:] = calib
 | 
						|
 | 
						|
    v_offset = buf.height - MODEL_HEIGHT
 | 
						|
    h_offset = (buf.width - MODEL_WIDTH) // 2
 | 
						|
    buf_data = buf.data.reshape(-1, buf.stride)
 | 
						|
    input_data = self.inputs['input_img'].reshape(MODEL_HEIGHT, MODEL_WIDTH)
 | 
						|
    input_data[:] = buf_data[v_offset:v_offset+MODEL_HEIGHT, h_offset:h_offset+MODEL_WIDTH]
 | 
						|
 | 
						|
    t1 = time.perf_counter()
 | 
						|
    self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32))
 | 
						|
    self.model.execute()
 | 
						|
    t2 = time.perf_counter()
 | 
						|
    return self.output, t2 - t1
 | 
						|
 | 
						|
 | 
						|
def fill_driver_state(msg, ds_result: DriverStateResult):
 | 
						|
  msg.faceOrientation = [x * REG_SCALE for x in ds_result.face_orientation]
 | 
						|
  msg.faceOrientationStd = [math.exp(x) for x in ds_result.face_orientation_std]
 | 
						|
  msg.facePosition = [x * REG_SCALE for x in ds_result.face_position[:2]]
 | 
						|
  msg.facePositionStd = [math.exp(x) for x in ds_result.face_position_std[:2]]
 | 
						|
  msg.faceProb = sigmoid(ds_result.face_prob)
 | 
						|
  msg.leftEyeProb = sigmoid(ds_result.left_eye_prob)
 | 
						|
  msg.rightEyeProb = sigmoid(ds_result.right_eye_prob)
 | 
						|
  msg.leftBlinkProb = sigmoid(ds_result.left_blink_prob)
 | 
						|
  msg.rightBlinkProb = sigmoid(ds_result.right_blink_prob)
 | 
						|
  msg.sunglassesProb = sigmoid(ds_result.sunglasses_prob)
 | 
						|
  msg.occludedProb = sigmoid(ds_result.occluded_prob)
 | 
						|
  msg.readyProb = [sigmoid(x) for x in ds_result.ready_prob]
 | 
						|
  msg.notReadyProb = [sigmoid(x) for x in ds_result.not_ready_prob]
 | 
						|
 | 
						|
def get_driverstate_packet(model_output: np.ndarray, frame_id: int, location_ts: int, execution_time: float, dsp_execution_time: float):
 | 
						|
  model_result = ctypes.cast(model_output.ctypes.data, ctypes.POINTER(DMonitoringModelResult)).contents
 | 
						|
  msg = messaging.new_message('driverStateV2', valid=True)
 | 
						|
  ds = msg.driverStateV2
 | 
						|
  ds.frameId = frame_id
 | 
						|
  ds.modelExecutionTime = execution_time
 | 
						|
  ds.dspExecutionTime = dsp_execution_time
 | 
						|
  ds.poorVisionProb = sigmoid(model_result.poor_vision_prob)
 | 
						|
  ds.wheelOnRightProb = sigmoid(model_result.wheel_on_right_prob)
 | 
						|
  ds.rawPredictions = model_output.tobytes() if SEND_RAW_PRED else b''
 | 
						|
  fill_driver_state(ds.leftDriverData, model_result.driver_state_lhd)
 | 
						|
  fill_driver_state(ds.rightDriverData, model_result.driver_state_rhd)
 | 
						|
  return msg
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
  gc.disable()
 | 
						|
  set_realtime_priority(1)
 | 
						|
 | 
						|
  model = ModelState()
 | 
						|
  cloudlog.warning("models loaded, dmonitoringmodeld starting")
 | 
						|
  Params().put_bool("DmModelInitialized", True)
 | 
						|
 | 
						|
  cloudlog.warning("connecting to driver stream")
 | 
						|
  vipc_client = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_DRIVER, True)
 | 
						|
  while not vipc_client.connect(False):
 | 
						|
    time.sleep(0.1)
 | 
						|
  assert vipc_client.is_connected()
 | 
						|
  cloudlog.warning(f"connected with buffer size: {vipc_client.buffer_len}")
 | 
						|
 | 
						|
  sm = SubMaster(["liveCalibration"])
 | 
						|
  pm = PubMaster(["driverStateV2"])
 | 
						|
 | 
						|
  calib = np.zeros(CALIB_LEN, dtype=np.float32)
 | 
						|
  # last = 0
 | 
						|
 | 
						|
  while True:
 | 
						|
    buf = vipc_client.recv()
 | 
						|
    if buf is None:
 | 
						|
      continue
 | 
						|
 | 
						|
    sm.update(0)
 | 
						|
    if sm.updated["liveCalibration"]:
 | 
						|
      calib[:] = np.array(sm["liveCalibration"].rpyCalib)
 | 
						|
 | 
						|
    t1 = time.perf_counter()
 | 
						|
    model_output, dsp_execution_time = model.run(buf, calib)
 | 
						|
    t2 = time.perf_counter()
 | 
						|
 | 
						|
    pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, dsp_execution_time))
 | 
						|
    # print("dmonitoring process: %.2fms, from last %.2fms\n" % (t2 - t1, t1 - last))
 | 
						|
    # last = t1
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  main()
 | 
						|
 |