openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

297 lines
13 KiB

#!/usr/bin/env python3
import os
import json
import numpy as np
import capnp
import cereal.messaging as messaging
from cereal import car, log
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, DT_MDL
from openpilot.selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
from openpilot.selfdrive.locationd.models.constants import GENERATED_DIR
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
from openpilot.common.swaglog import cloudlog
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL # 20deg in 1 second is well within curvature limits
ROLL_MIN, ROLL_MAX = np.radians(-10), np.radians(10)
ROLL_LOWERED_MAX = np.radians(8)
ROLL_STD_MAX = np.radians(1.5)
LATERAL_ACC_SENSOR_THRESHOLD = 4.0
OFFSET_MAX = 10.0
OFFSET_LOWERED_MAX = 8.0
MIN_ACTIVE_SPEED = 1.0
LOW_ACTIVE_SPEED = 10.0
class VehicleParamsLearner:
def __init__(self, CP: car.CarParams, steer_ratio: float, stiffness_factor: float, angle_offset: float, P_initial: np.ndarray | None = None):
self.kf = CarKalman(GENERATED_DIR)
self.x_initial = CarKalman.initial_x.copy()
self.x_initial[States.STEER_RATIO] = steer_ratio
self.x_initial[States.STIFFNESS] = stiffness_factor
self.x_initial[States.ANGLE_OFFSET] = angle_offset
self.P_initial = P_initial or CarKalman.P_initial
self.kf.set_globals(
mass=CP.mass,
rotational_inertia=CP.rotationalInertia,
center_to_front=CP.centerToFront,
center_to_rear=CP.wheelbase - CP.centerToFront,
stiffness_front=CP.tireStiffnessFront,
stiffness_rear=CP.tireStiffnessRear
)
self.min_sr, self.max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
self.calibrator = PoseCalibrator()
self.observed_speed = 0.0
self.observed_yaw_rate = 0.0
self.observed_roll = 0.0
self.avg_offset_valid = True
self.total_offset_valid = True
self.roll_valid = True
self.reset(None)
def reset(self, t: float | None):
self.kf.init_state(self.x_initial, covs=self.P_initial, filter_time=t)
self.angle_offset, self.roll, self.active = np.degrees(self.x_initial[States.ANGLE_OFFSET].item()), 0.0, False
self.avg_angle_offset = self.angle_offset
def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader):
if which == 'livePose':
device_pose = Pose.from_live_pose(msg)
calibrated_pose = self.calibrator.build_calibrated_pose(device_pose)
yaw_rate, yaw_rate_std = calibrated_pose.angular_velocity.z, calibrated_pose.angular_velocity.z_std
yaw_rate_valid = msg.angularVelocityDevice.valid
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
if not yaw_rate_valid:
# This is done to bound the yaw rate estimate when localizer values are invalid or calibrating
yaw_rate, yaw_rate_std = 0.0, np.radians(10.0)
self.observed_yaw_rate = yaw_rate
localizer_roll, localizer_roll_std = device_pose.orientation.x, device_pose.orientation.x_std
localizer_roll_std = np.radians(1) if np.isnan(localizer_roll_std) else localizer_roll_std
roll_valid = (localizer_roll_std < ROLL_STD_MAX) and (ROLL_MIN < localizer_roll < ROLL_MAX) and msg.sensorsOK
if roll_valid:
roll = localizer_roll
# Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
roll_std = 2 * localizer_roll_std
else:
# This is done to bound the road roll estimate when localizer values are invalid
roll = 0.0
roll_std = np.radians(10.0)
self.observed_roll = np.clip(roll, self.observed_roll - ROLL_MAX_DELTA, self.observed_roll + ROLL_MAX_DELTA)
if self.active:
if msg.posenetOK:
self.kf.predict_and_observe(t,
ObservationKind.ROAD_FRAME_YAW_RATE,
np.array([[-self.observed_yaw_rate]]),
np.array([np.atleast_2d(yaw_rate_std**2)]))
self.kf.predict_and_observe(t,
ObservationKind.ROAD_ROLL,
np.array([[self.observed_roll]]),
np.array([np.atleast_2d(roll_std**2)]))
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
# We observe the current stiffness and steer ratio (with a high observation noise) to bound
# the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
# states in longer routes (especially straight stretches).
stiffness = float(self.kf.x[States.STIFFNESS].item())
steer_ratio = float(self.kf.x[States.STEER_RATIO].item())
self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
elif which == 'liveCalibration':
self.calibrator.feed_live_calib(msg)
elif which == 'carState':
steering_angle = msg.steeringAngleDeg
in_linear_region = abs(steering_angle) < 45
self.observed_speed = msg.vEgo
self.active = self.observed_speed > MIN_ACTIVE_SPEED and in_linear_region
if self.active:
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[np.radians(steering_angle)]]))
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.observed_speed]]))
if not self.active:
# Reset time when stopped so uncertainty doesn't grow
self.kf.filter.set_filter_time(t) # type: ignore
self.kf.filter.reset_rewind() # type: ignore
def get_msg(self, valid: bool, debug: bool = False) -> capnp._DynamicStructBuilder:
x = self.kf.x
P = np.sqrt(self.kf.P.diagonal())
if not np.all(np.isfinite(x)):
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
self.reset(self.kf.t)
x = self.kf.x
self.avg_angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item()),
self.avg_angle_offset - MAX_ANGLE_OFFSET_DELTA, self.avg_angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.angle_offset = np.clip(np.degrees(x[States.ANGLE_OFFSET].item() + x[States.ANGLE_OFFSET_FAST].item()),
self.angle_offset - MAX_ANGLE_OFFSET_DELTA, self.angle_offset + MAX_ANGLE_OFFSET_DELTA)
self.roll = np.clip(float(x[States.ROAD_ROLL].item()), self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
roll_std = float(P[States.ROAD_ROLL].item())
if self.active and self.observed_speed > LOW_ACTIVE_SPEED:
# Account for the opposite signs of the yaw rates
# At low speeds, bumping into a curb can cause the yaw rate to be very high
sensors_valid = bool(abs(self.observed_speed * (x[States.YAW_RATE].item() + self.observed_yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
else:
sensors_valid = True
self.avg_offset_valid = check_valid_with_hysteresis(self.avg_offset_valid, self.avg_angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.total_offset_valid = check_valid_with_hysteresis(self.total_offset_valid, self.angle_offset, OFFSET_MAX, OFFSET_LOWERED_MAX)
self.roll_valid = check_valid_with_hysteresis(self.roll_valid, self.roll, ROLL_MAX, ROLL_LOWERED_MAX)
msg = messaging.new_message('liveParameters')
msg.valid = valid
liveParameters = msg.liveParameters
liveParameters.posenetValid = True
liveParameters.sensorValid = sensors_valid
liveParameters.steerRatio = float(x[States.STEER_RATIO].item())
liveParameters.stiffnessFactor = float(x[States.STIFFNESS].item())
liveParameters.roll = float(self.roll)
liveParameters.angleOffsetAverageDeg = float(self.avg_angle_offset)
liveParameters.angleOffsetDeg = float(self.angle_offset)
liveParameters.steerRatioValid = self.min_sr <= liveParameters.steerRatio <= self.max_sr
liveParameters.stiffnessFactorValid = 0.2 <= liveParameters.stiffnessFactor <= 5.0
liveParameters.angleOffsetAverageValid = bool(self.avg_offset_valid)
liveParameters.angleOffsetValid = bool(self.total_offset_valid)
liveParameters.valid = all((
liveParameters.angleOffsetAverageValid,
liveParameters.angleOffsetValid ,
self.roll_valid,
roll_std < ROLL_STD_MAX,
liveParameters.stiffnessFactorValid,
liveParameters.steerRatioValid,
))
liveParameters.steerRatioStd = float(P[States.STEER_RATIO].item())
liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS].item())
liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET].item())
liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST].item())
if debug:
liveParameters.debugFilterState = log.LiveParametersData.FilterState.new_message()
liveParameters.debugFilterState.value = x.tolist()
liveParameters.debugFilterState.std = P.tolist()
return msg
def check_valid_with_hysteresis(current_valid: bool, val: float, threshold: float, lowered_threshold: float):
if current_valid:
current_valid = abs(val) < threshold
else:
current_valid = abs(val) < lowered_threshold
return current_valid
# TODO: Remove this function after few releases (added in 0.9.9)
def migrate_cached_vehicle_params_if_needed(params_reader: Params):
last_parameters_data = params_reader.get("LiveParameters")
if last_parameters_data is None:
return
try:
last_parameters_dict = json.loads(last_parameters_data)
last_parameters_msg = messaging.new_message('liveParameters')
last_parameters_msg.liveParameters.valid = True
last_parameters_msg.liveParameters.steerRatio = last_parameters_dict['steerRatio']
last_parameters_msg.liveParameters.stiffnessFactor = last_parameters_dict['stiffnessFactor']
last_parameters_msg.liveParameters.angleOffsetAverageDeg = last_parameters_dict['angleOffsetAverageDeg']
params_reader.put("LiveParameters", last_parameters_msg.to_bytes())
except (json.JSONDecodeError, KeyError):
pass
def retrieve_initial_vehicle_params(params_reader: Params, CP: car.CarParams, replay: bool, debug: bool):
last_parameters_data = params_reader.get("LiveParameters")
last_carparams_data = params_reader.get("CarParamsPrevRoute")
steer_ratio, stiffness_factor, angle_offset_deg, p_initial = CP.steerRatio, 1.0, 0.0, None
retrieve_success = False
if last_parameters_data is not None and last_carparams_data is not None:
try:
with log.Event.from_bytes(last_parameters_data) as last_lp_msg, car.CarParams.from_bytes(last_carparams_data) as last_CP:
lp = last_lp_msg.liveParameters
# Check if car model matches
if last_CP.carFingerprint != CP.carFingerprint:
raise Exception("Car model mismatch")
# Check if starting values are sane
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
steer_ratio_sane = min_sr <= lp.steerRatio <= max_sr
if not steer_ratio_sane:
raise Exception(f"Invalid starting values found {lp}")
initial_filter_std = np.array(lp.debugFilterState.std)
if debug and len(initial_filter_std) != 0:
p_initial = initial_filter_std
steer_ratio, stiffness_factor, angle_offset_deg = lp.steerRatio, lp.stiffnessFactor, lp.angleOffsetAverageDeg
retrieve_success = True
except Exception as e:
cloudlog.error(f"Failed to retrieve initial values: {e}")
if not replay:
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
# Without a way to detect this we have to reset the stiffness every drive
stiffness_factor = 1.0
if not retrieve_success:
cloudlog.info("Parameter learner resetting to default values")
return steer_ratio, stiffness_factor, angle_offset_deg, p_initial
def main():
config_realtime_process([0, 1, 2, 3], 5)
DEBUG = bool(int(os.getenv("DEBUG", "0")))
REPLAY = bool(int(os.getenv("REPLAY", "0")))
pm = messaging.PubMaster(['liveParameters'])
sm = messaging.SubMaster(['livePose', 'liveCalibration', 'carState'], poll='livePose')
params_reader = Params()
CP = messaging.log_from_bytes(params_reader.get("CarParams", block=True), car.CarParams)
migrate_cached_vehicle_params_if_needed(params_reader)
steer_ratio, stiffness_factor, angle_offset_deg, pInitial = retrieve_initial_vehicle_params(params_reader, CP, REPLAY, DEBUG)
learner = VehicleParamsLearner(CP, steer_ratio, stiffness_factor, np.radians(angle_offset_deg), pInitial)
while True:
sm.update()
if sm.all_checks():
for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
learner.handle_log(t, which, sm[which])
if sm.updated['livePose']:
msg = learner.get_msg(sm.all_checks(), debug=DEBUG)
msg_dat = msg.to_bytes()
if sm.frame % 1200 == 0: # once a minute
params_reader.put_nonblocking("LiveParameters", msg_dat)
pm.send('liveParameters', msg_dat)
if __name__ == "__main__":
main()