openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

186 lines
6.2 KiB

// uses tons from safety_toyota
// TODO: refactor to repeat less code
// IPAS override
const int32_t TOYOTA_IPAS_OVERRIDE_THRESHOLD = 200; // disallow controls when user torque exceeds this value
struct lookup_t {
float x[3];
float y[3];
};
// 2m/s are added to be less restrictive
const struct lookup_t LOOKUP_ANGLE_RATE_UP = {
{2., 7., 17.},
{5., .8, .15}};
const struct lookup_t LOOKUP_ANGLE_RATE_DOWN = {
{2., 7., 17.},
{5., 3.5, .4}};
const float RT_ANGLE_FUDGE = 1.5; // for RT checks allow 50% more angle change
const float CAN_TO_DEG = 2. / 3.; // convert angles from CAN unit to degrees
int ipas_state = 1; // 1 disabled, 3 executing angle control, 5 override
int angle_control = 0; // 1 if direct angle control packets are seen
float speed = 0.;
struct sample_t angle_meas; // last 3 steer angles
struct sample_t torque_driver; // last 3 driver steering torque
// state of angle limits
int16_t desired_angle_last = 0; // last desired steer angle
int16_t rt_angle_last = 0; // last desired torque for real time check
uint32_t ts_angle_last = 0;
int controls_allowed_last = 0;
// interp function that holds extreme values
float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
return xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < size-1; i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed ot be monotonic
if (dx <= 0.) dx = 0.0001;
return dy * (x - x0) / dx + y0;
}
}
// if no such point is found, then x > xy.x[size-1]. Return last point
return xy.y[size - 1];
}
}
static void toyota_ipas_rx_hook(CAN_FIFOMailBox_TypeDef *to_push) {
// check standard toyota stuff as well
toyota_rx_hook(to_push);
if ((to_push->RIR>>21) == 0x260) {
// get driver steering torque
int16_t torque_driver_new = (((to_push->RDLR) & 0xFF00) | ((to_push->RDLR >> 16) & 0xFF));
// update array of samples
update_sample(&torque_driver, torque_driver_new);
}
// get steer angle
if ((to_push->RIR>>21) == 0x25) {
int angle_meas_new = ((to_push->RDLR & 0xf) << 8) + ((to_push->RDLR & 0xff00) >> 8);
uint32_t ts = TIM2->CNT;
angle_meas_new = to_signed(angle_meas_new, 12);
// update array of samples
update_sample(&angle_meas, angle_meas_new);
// *** angle real time check
// add 1 to not false trigger the violation and multiply by 20 since the check is done every 250ms and steer angle is updated at 80Hz
int rt_delta_angle_up = ((int)(RT_ANGLE_FUDGE * (interpolate(LOOKUP_ANGLE_RATE_UP, speed) * 20. * CAN_TO_DEG + 1.)));
int rt_delta_angle_down = ((int)(RT_ANGLE_FUDGE * (interpolate(LOOKUP_ANGLE_RATE_DOWN, speed) * 20. * CAN_TO_DEG + 1.)));
int highest_rt_angle = rt_angle_last + (rt_angle_last > 0? rt_delta_angle_up:rt_delta_angle_down);
int lowest_rt_angle = rt_angle_last - (rt_angle_last > 0? rt_delta_angle_down:rt_delta_angle_up);
// every RT_INTERVAL or when controls are turned on, set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_angle_last);
if ((ts_elapsed > TOYOTA_RT_INTERVAL) || (controls_allowed && !controls_allowed_last)) {
rt_angle_last = angle_meas_new;
ts_angle_last = ts;
}
// check for violation
if (angle_control &&
((angle_meas_new < lowest_rt_angle) ||
(angle_meas_new > highest_rt_angle))) {
controls_allowed = 0;
}
controls_allowed_last = controls_allowed;
}
// get speed
if ((to_push->RIR>>21) == 0xb4) {
speed = ((float) (((to_push->RDHR) & 0xFF00) | ((to_push->RDHR >> 16) & 0xFF))) * 0.01 / 3.6;
}
// get ipas state
if ((to_push->RIR>>21) == 0x262) {
ipas_state = (to_push->RDLR & 0xf);
}
// exit controls on high steering override
if (angle_control && ((torque_driver.min > TOYOTA_IPAS_OVERRIDE_THRESHOLD) ||
(torque_driver.max < -TOYOTA_IPAS_OVERRIDE_THRESHOLD) ||
(ipas_state==5))) {
controls_allowed = 0;
}
}
static int toyota_ipas_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) {
// Check if msg is sent on BUS 0
if (((to_send->RDTR >> 4) & 0xF) == 0) {
// STEER ANGLE
if (((to_send->RIR>>21) == 0x266) || ((to_send->RIR>>21) == 0x167)) {
angle_control = 1; // we are in angle control mode
int desired_angle = ((to_send->RDLR & 0xf) << 8) + ((to_send->RDLR & 0xff00) >> 8);
int ipas_state_cmd = ((to_send->RDLR & 0xff) >> 4);
int16_t violation = 0;
desired_angle = to_signed(desired_angle, 12);
if (controls_allowed) {
// add 1 to not false trigger the violation
int delta_angle_up = (int) (interpolate(LOOKUP_ANGLE_RATE_UP, speed) * CAN_TO_DEG + 1.);
int delta_angle_down = (int) (interpolate(LOOKUP_ANGLE_RATE_DOWN, speed) * CAN_TO_DEG + 1.);
int highest_desired_angle = desired_angle_last + (desired_angle_last > 0? delta_angle_up:delta_angle_down);
int lowest_desired_angle = desired_angle_last - (desired_angle_last > 0? delta_angle_down:delta_angle_up);
if ((desired_angle > highest_desired_angle) ||
(desired_angle < lowest_desired_angle)){
violation = 1;
controls_allowed = 0;
}
}
// desired steer angle should be the same as steer angle measured when controls are off
if ((!controls_allowed) &&
((desired_angle < (angle_meas.min - 1)) ||
(desired_angle > (angle_meas.max + 1)) ||
(ipas_state_cmd != 1))) {
violation = 1;
}
desired_angle_last = desired_angle;
if (violation) {
return false;
}
return true;
}
}
// check standard toyota stuff as well
return toyota_tx_hook(to_send);
}
const safety_hooks toyota_ipas_hooks = {
.init = toyota_init,
.rx = toyota_ipas_rx_hook,
.tx = toyota_ipas_tx_hook,
.tx_lin = toyota_tx_lin_hook,
.ignition = default_ign_hook,
.fwd = toyota_fwd_hook,
};