openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

219 lines
7.3 KiB

#!/usr/bin/env python
from common.realtime import sec_since_boot
from cereal import car
from selfdrive.swaglog import cloudlog
from selfdrive.config import Conversions as CV
from selfdrive.controls.lib.drive_helpers import EventTypes as ET, create_event
from selfdrive.controls.lib.vehicle_model import VehicleModel
from selfdrive.car.ford.carstate import CarState, get_can_parser
from selfdrive.car.ford.values import MAX_ANGLE
try:
from selfdrive.car.ford.carcontroller import CarController
except ImportError:
CarController = None
class CarInterface(object):
def __init__(self, CP, sendcan=None):
self.CP = CP
self.VM = VehicleModel(CP)
self.frame = 0
self.can_invalid_count = 0
self.gas_pressed_prev = False
self.brake_pressed_prev = False
self.cruise_enabled_prev = False
# *** init the major players ***
self.CS = CarState(CP)
self.cp = get_can_parser(CP)
# sending if read only is False
if sendcan is not None:
self.sendcan = sendcan
self.CC = CarController(self.cp.dbc_name, CP.enableCamera, self.VM)
@staticmethod
def compute_gb(accel, speed):
return float(accel) / 3.0
@staticmethod
def calc_accel_override(a_ego, a_target, v_ego, v_target):
return 1.0
@staticmethod
def get_params(candidate, fingerprint):
# kg of standard extra cargo to count for drive, gas, etc...
std_cargo = 136
ret = car.CarParams.new_message()
ret.carName = "ford"
ret.carFingerprint = candidate
ret.safetyModel = car.CarParams.SafetyModels.ford
# pedal
ret.enableCruise = True
# FIXME: hardcoding honda civic 2016 touring params so they can be used to
# scale unknown params for other cars
mass_civic = 2923. * CV.LB_TO_KG + std_cargo
wheelbase_civic = 2.70
centerToFront_civic = wheelbase_civic * 0.4
centerToRear_civic = wheelbase_civic - centerToFront_civic
rotationalInertia_civic = 2500
tireStiffnessFront_civic = 85400
tireStiffnessRear_civic = 90000
ret.steerKiBP, ret.steerKpBP = [[0.], [0.]]
ret.wheelbase = 2.85
ret.steerRatio = 14.8
ret.mass = 3045. * CV.LB_TO_KG + std_cargo
ret.steerKpV, ret.steerKiV = [[0.01], [0.005]] # TODO: tune this
ret.steerKf = 1. / MAX_ANGLE # MAX Steer angle to normalize FF
ret.steerActuatorDelay = 0.1 # Default delay, not measured yet
ret.steerRateCost = 1.0
f = 1.2
tireStiffnessFront_civic *= f
tireStiffnessRear_civic *= f
ret.centerToFront = ret.wheelbase * 0.44
ret.longPidDeadzoneBP = [0., 9.]
ret.longPidDeadzoneV = [0., .15]
# min speed to enable ACC. if car can do stop and go, then set enabling speed
# to a negative value, so it won't matter.
ret.minEnableSpeed = -1.
centerToRear = ret.wheelbase - ret.centerToFront
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
ret.rotationalInertia = rotationalInertia_civic * \
ret.mass * ret.wheelbase**2 / (mass_civic * wheelbase_civic**2)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
ret.tireStiffnessFront = tireStiffnessFront_civic * \
ret.mass / mass_civic * \
(centerToRear / ret.wheelbase) / (centerToRear_civic / wheelbase_civic)
ret.tireStiffnessRear = tireStiffnessRear_civic * \
ret.mass / mass_civic * \
(ret.centerToFront / ret.wheelbase) / (centerToFront_civic / wheelbase_civic)
# no rear steering, at least on the listed cars above
ret.steerRatioRear = 0.
ret.steerControlType = car.CarParams.SteerControlType.angle
# steer, gas, brake limitations VS speed
ret.steerMaxBP = [0.] # breakpoints at 1 and 40 kph
ret.steerMaxV = [1.0] # 2/3rd torque allowed above 45 kph
ret.gasMaxBP = [0.]
ret.gasMaxV = [0.5]
ret.brakeMaxBP = [5., 20.]
ret.brakeMaxV = [1., 0.8]
ret.enableCamera = not any(x for x in [970, 973, 984] if x in fingerprint)
ret.openpilotLongitudinalControl = False
cloudlog.warn("ECU Camera Simulated: %r", ret.enableCamera)
ret.steerLimitAlert = False
ret.stoppingControl = False
ret.startAccel = 0.0
ret.longitudinalKpBP = [0., 5., 35.]
ret.longitudinalKpV = [3.6, 2.4, 1.5]
ret.longitudinalKiBP = [0., 35.]
ret.longitudinalKiV = [0.54, 0.36]
return ret
# returns a car.CarState
def update(self, c):
# ******************* do can recv *******************
canMonoTimes = []
self.cp.update(int(sec_since_boot() * 1e9), False)
self.CS.update(self.cp)
# create message
ret = car.CarState.new_message()
# speeds
ret.vEgo = self.CS.v_ego
ret.vEgoRaw = self.CS.v_ego_raw
ret.standstill = self.CS.standstill
ret.wheelSpeeds.fl = self.CS.v_wheel_fl
ret.wheelSpeeds.fr = self.CS.v_wheel_fr
ret.wheelSpeeds.rl = self.CS.v_wheel_rl
ret.wheelSpeeds.rr = self.CS.v_wheel_rr
# steering wheel
ret.steeringAngle = self.CS.angle_steers
ret.steeringPressed = self.CS.steer_override
# gas pedal
ret.gas = self.CS.user_gas / 100.
ret.gasPressed = self.CS.user_gas > 0.0001
ret.brakePressed = self.CS.brake_pressed
ret.brakeLights = self.CS.brake_lights
ret.cruiseState.enabled = not (self.CS.pcm_acc_status in [0, 3])
ret.cruiseState.speed = self.CS.v_cruise_pcm
ret.cruiseState.available = self.CS.pcm_acc_status != 0
ret.genericToggle = self.CS.generic_toggle
# events
events = []
if not self.CS.can_valid:
self.can_invalid_count += 1
if self.can_invalid_count >= 5:
events.append(create_event('commIssue', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
else:
self.can_invalid_count = 0
if self.CS.steer_error:
events.append(create_event('steerUnavailable', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE, ET.PERMANENT]))
# enable request in prius is simple, as we activate when Toyota is active (rising edge)
if ret.cruiseState.enabled and not self.cruise_enabled_prev:
events.append(create_event('pcmEnable', [ET.ENABLE]))
elif not ret.cruiseState.enabled:
events.append(create_event('pcmDisable', [ET.USER_DISABLE]))
# disable on pedals rising edge or when brake is pressed and speed isn't zero
if (ret.gasPressed and not self.gas_pressed_prev) or \
(ret.brakePressed and (not self.brake_pressed_prev or ret.vEgo > 0.001)):
events.append(create_event('pedalPressed', [ET.NO_ENTRY, ET.USER_DISABLE]))
if ret.gasPressed:
events.append(create_event('pedalPressed', [ET.PRE_ENABLE]))
if self.CS.lkas_state not in [2, 3] and ret.vEgo > 13.* CV.MPH_TO_MS and ret.cruiseState.enabled:
events.append(create_event('steerTempUnavailableMute', [ET.WARNING]))
ret.events = events
ret.canMonoTimes = canMonoTimes
self.gas_pressed_prev = ret.gasPressed
self.brake_pressed_prev = ret.brakePressed
self.cruise_enabled_prev = ret.cruiseState.enabled
return ret.as_reader()
# pass in a car.CarControl
# to be called @ 100hz
def apply(self, c):
self.CC.update(self.sendcan, c.enabled, self.CS, self.frame, c.actuators,
c.hudControl.visualAlert, c.cruiseControl.cancel)
self.frame += 1
return False