openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

165 lines
5.3 KiB

import numpy as np
import os
from bisect import bisect
from tqdm import tqdm
class ObservationKind(object):
UNKNOWN = 0
NO_OBSERVATION = 1
GPS_NED = 2
ODOMETRIC_SPEED = 3
PHONE_GYRO = 4
GPS_VEL = 5
PSEUDORANGE_GPS = 6
PSEUDORANGE_RATE_GPS = 7
SPEED = 8
NO_ROT = 9
PHONE_ACCEL = 10
ORB_POINT = 11
ECEF_POS = 12
CAMERA_ODO_TRANSLATION = 13
CAMERA_ODO_ROTATION = 14
ORB_FEATURES = 15
MSCKF_TEST = 16
FEATURE_TRACK_TEST = 17
LANE_PT = 18
IMU_FRAME = 19
PSEUDORANGE_GLONASS = 20
PSEUDORANGE_RATE_GLONASS = 21
PSEUDORANGE = 22
PSEUDORANGE_RATE = 23
names = ['Unknown',
'No observation',
'GPS NED',
'Odometric speed',
'Phone gyro',
'GPS velocity',
'GPS pseudorange',
'GPS pseudorange rate',
'Speed',
'No rotation',
'Phone acceleration',
'ORB point',
'ECEF pos',
'camera odometric translation',
'camera odometric rotation',
'ORB features',
'MSCKF test',
'Feature track test',
'Lane ecef point',
'imu frame eulers',
'GLONASS pseudorange',
'GLONASS pseudorange rate']
@classmethod
def to_string(cls, kind):
return cls.names[kind]
SAT_OBS = [ObservationKind.PSEUDORANGE_GPS,
ObservationKind.PSEUDORANGE_RATE_GPS,
ObservationKind.PSEUDORANGE_GLONASS,
ObservationKind.PSEUDORANGE_RATE_GLONASS]
def run_car_ekf_offline(kf, observations_by_kind):
from laika.raw_gnss import GNSSMeasurement # pylint: disable=import-error
observations = []
# create list of observations with element format: [kind, time, data]
for kind in observations_by_kind:
for t, data in zip(observations_by_kind[kind][0], observations_by_kind[kind][1]):
observations.append([t, kind, data])
observations.sort(key=lambda obs: obs[0])
times, estimates = run_observations_through_filter(kf, observations)
forward_states = np.stack(e[1] for e in estimates)
forward_covs = np.stack(e[3] for e in estimates)
smoothed_states, smoothed_covs = kf.rts_smooth(estimates)
observations_dict = {}
# TODO assuming observations and estimates
# are same length may not work with VO
for e in estimates:
t = e[4]
kind = str(int(e[5]))
res = e[6]
z = e[7]
ea = e[8]
if len(z) == 0:
continue
if kind not in observations_dict:
observations_dict[kind] = {}
observations_dict[kind]['t'] = np.array(len(z)*[t])
observations_dict[kind]['z'] = np.array(z)
observations_dict[kind]['ea'] = np.array(ea)
observations_dict[kind]['residual'] = np.array(res)
else:
observations_dict[kind]['t'] = np.append(observations_dict[kind]['t'], np.array(len(z)*[t]))
observations_dict[kind]['z'] = np.vstack((observations_dict[kind]['z'], np.array(z)))
observations_dict[kind]['ea'] = np.vstack((observations_dict[kind]['ea'], np.array(ea)))
observations_dict[kind]['residual'] = np.vstack((observations_dict[kind]['residual'], np.array(res)))
# add svIds to gnss data
for kind in map(str, SAT_OBS):
if int(kind) in observations_by_kind and kind in observations_dict:
observations_dict[kind]['svIds'] = np.array([])
observations_dict[kind]['CNO'] = np.array([])
observations_dict[kind]['std'] = np.array([])
for obs in observations_by_kind[int(kind)][1]:
observations_dict[kind]['svIds'] = np.append(observations_dict[kind]['svIds'],
np.array([obs[:,GNSSMeasurement.PRN]]))
observations_dict[kind]['std'] = np.append(observations_dict[kind]['std'],
np.array([obs[:,GNSSMeasurement.PR_STD]]))
return smoothed_states, smoothed_covs, forward_states, forward_covs, times, observations_dict
def run_observations_through_filter(kf, observations, filter_time=None):
estimates = []
for obs in tqdm(observations):
t = obs[0]
kind = obs[1]
data = obs[2]
estimates.append(kf.predict_and_observe(t, kind, data))
times = [x[4] for x in estimates]
return times, estimates
def save_residuals_plot(obs, save_path, data_name):
import matplotlib.pyplot as plt
import mpld3 # pylint: disable=import-error
fig = plt.figure(figsize=(10,20))
fig.suptitle('Residuals of ' + data_name, fontsize=24)
n = len(obs.keys())
start_times = [obs[kind]['t'][0] for kind in obs]
start_time = min(start_times)
xlims = [start_time + 3, start_time + 60]
for i, kind in enumerate(obs):
ax = fig.add_subplot(n, 1, i+1)
ax.set_xlim(xlims)
t = obs[kind]['t']
res = obs[kind]['residual']
start_idx = bisect(t, xlims[0])
if len(res) == start_idx:
continue
ylim = max(np.linalg.norm(res[start_idx:], axis=1))
ax.set_ylim([-ylim, ylim])
if int(kind) in SAT_OBS:
svIds = obs[kind]['svIds']
for svId in set(svIds):
svId_idx = (svIds == svId)
t = obs[kind]['t'][svId_idx]
res = obs[kind]['residual'][svId_idx]
ax.plot(t, res, label='SV ' + str(int(svId)))
ax.legend(loc='right')
else:
ax.plot(t, res)
plt.title('Residual of kind ' + ObservationKind.to_string(int(kind)), fontsize=20)
plt.tight_layout()
os.makedirs(save_path)
mpld3.save_html(fig, save_path + 'residuals_plot.html')