openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

83 lines
3.4 KiB

import numpy as np
from openpilot.selfdrive.test.longitudinal_maneuvers.plant import Plant
class Maneuver:
def __init__(self, title, duration, **kwargs):
# Was tempted to make a builder class
self.distance_lead = kwargs.get("initial_distance_lead", 200.0)
self.speed = kwargs.get("initial_speed", 0.0)
self.lead_relevancy = kwargs.get("lead_relevancy", 0)
self.breakpoints = kwargs.get("breakpoints", [0.0, duration])
self.speed_lead_values = kwargs.get("speed_lead_values", [0.0 for i in range(len(self.breakpoints))])
self.prob_lead_values = kwargs.get("prob_lead_values", [1.0 for i in range(len(self.breakpoints))])
self.prob_throttle_values = kwargs.get("prob_throttle_values", [1.0 for i in range(len(self.breakpoints))])
self.cruise_values = kwargs.get("cruise_values", [50.0 for i in range(len(self.breakpoints))])
self.pitch_values = kwargs.get("pitch_values", [0.0 for i in range(len(self.breakpoints))])
self.only_lead2 = kwargs.get("only_lead2", False)
self.only_radar = kwargs.get("only_radar", False)
self.ensure_start = kwargs.get("ensure_start", False)
self.ensure_slowdown = kwargs.get("ensure_slowdown", False)
self.enabled = kwargs.get("enabled", True)
self.e2e = kwargs.get("e2e", False)
self.personality = kwargs.get("personality", 0)
self.force_decel = kwargs.get("force_decel", False)
self.duration = duration
self.title = title
def evaluate(self):
plant = Plant(
lead_relevancy=self.lead_relevancy,
speed=self.speed,
distance_lead=self.distance_lead,
enabled=self.enabled,
only_lead2=self.only_lead2,
only_radar=self.only_radar,
e2e=self.e2e,
personality=self.personality,
force_decel=self.force_decel,
)
valid = True
logs = []
while plant.current_time < self.duration:
speed_lead = np.interp(plant.current_time, self.breakpoints, self.speed_lead_values)
prob_lead = np.interp(plant.current_time, self.breakpoints, self.prob_lead_values)
cruise = np.interp(plant.current_time, self.breakpoints, self.cruise_values)
pitch = np.interp(plant.current_time, self.breakpoints, self.pitch_values)
prob_throttle = np.interp(plant.current_time, self.breakpoints, self.prob_throttle_values)
log = plant.step(speed_lead, prob_lead, cruise, pitch, prob_throttle)
d_rel = log['distance_lead'] - log['distance'] if self.lead_relevancy else 200.
v_rel = speed_lead - log['speed'] if self.lead_relevancy else 0.
log['d_rel'] = d_rel
log['v_rel'] = v_rel
logs.append(np.array([plant.current_time,
log['distance'],
log['distance_lead'],
log['speed'],
speed_lead,
log['acceleration']]))
if d_rel < .4 and (self.only_radar or prob_lead > 0.5):
print("Crashed!!!!")
valid = False
if self.ensure_start and log['v_rel'] > 0 and log['acceleration'] < 1e-3:
print('LongitudinalPlanner not starting!')
valid = False
if self.ensure_slowdown and log['speed'] > 5.5:
print('LongitudinalPlanner not slowing down!')
valid = False
if self.force_decel and log['speed'] > 1e-1 and log['acceleration'] > -0.04:
print('Not stopping with force decel')
valid = False
print("maneuver end", valid)
return valid, np.array(logs)