You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							62 lines
						
					
					
						
							1.6 KiB
						
					
					
				
			
		
		
	
	
							62 lines
						
					
					
						
							1.6 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import sys
 | |
| import numpy as np
 | |
| import matplotlib.pyplot as plt
 | |
| from sklearn import linear_model
 | |
| from openpilot.selfdrive.car.toyota.values import STEER_THRESHOLD
 | |
| 
 | |
| from openpilot.tools.lib.logreader import LogReader
 | |
| 
 | |
| MIN_SAMPLES = 30 * 100
 | |
| 
 | |
| 
 | |
| def to_signed(n, bits):
 | |
|   if n >= (1 << max((bits - 1), 0)):
 | |
|     n = n - (1 << max(bits, 0))
 | |
|   return n
 | |
| 
 | |
| 
 | |
| def get_eps_factor(lr, plot=False):
 | |
|   engaged = False
 | |
|   steering_pressed = False
 | |
|   torque_cmd, eps_torque = None, None
 | |
|   cmds, eps = [], []
 | |
| 
 | |
|   for msg in lr:
 | |
|     if msg.which() != 'can':
 | |
|       continue
 | |
| 
 | |
|     for m in msg.can:
 | |
|       if m.address == 0x2e4 and m.src == 128:
 | |
|         engaged = bool(m.dat[0] & 1)
 | |
|         torque_cmd = to_signed((m.dat[1] << 8) | m.dat[2], 16)
 | |
|       elif m.address == 0x260 and m.src == 0:
 | |
|         eps_torque = to_signed((m.dat[5] << 8) | m.dat[6], 16)
 | |
|         steering_pressed = abs(to_signed((m.dat[1] << 8) | m.dat[2], 16)) > STEER_THRESHOLD
 | |
| 
 | |
|     if engaged and torque_cmd is not None and eps_torque is not None and not steering_pressed:
 | |
|       cmds.append(torque_cmd)
 | |
|       eps.append(eps_torque)
 | |
|     else:
 | |
|       if len(cmds) > MIN_SAMPLES:
 | |
|         break
 | |
|       cmds, eps = [], []
 | |
| 
 | |
|   if len(cmds) < MIN_SAMPLES:
 | |
|     raise Exception("too few samples found in route")
 | |
| 
 | |
|   lm = linear_model.LinearRegression(fit_intercept=False)
 | |
|   lm.fit(np.array(cmds).reshape(-1, 1), eps)
 | |
|   scale_factor = 1. / lm.coef_[0]
 | |
| 
 | |
|   if plot:
 | |
|     plt.plot(np.array(eps) * scale_factor)
 | |
|     plt.plot(cmds)
 | |
|     plt.show()
 | |
|   return scale_factor
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   lr = LogReader(sys.argv[1])
 | |
|   n = get_eps_factor(lr, plot="--plot" in sys.argv)
 | |
|   print("EPS torque factor: ", n)
 | |
| 
 |