You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							139 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							139 lines
						
					
					
						
							3.6 KiB
						
					
					
				| #include <acado_code_generation.hpp>
 | |
| 
 | |
| #define PI 3.1415926536
 | |
| #define deg2rad(d) (d/180.0*PI)
 | |
| 
 | |
| const int controlHorizon = 50;
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| int main( )
 | |
| {
 | |
|   USING_NAMESPACE_ACADO
 | |
| 
 | |
| 
 | |
|   DifferentialEquation f;
 | |
| 
 | |
|   DifferentialState xx; // x position
 | |
|   DifferentialState yy; // y position
 | |
|   DifferentialState psi; // vehicle heading
 | |
|   DifferentialState delta;
 | |
| 
 | |
|   OnlineData curvature_factor;
 | |
|   OnlineData v_ref; // m/s
 | |
|   OnlineData l_poly_r0, l_poly_r1, l_poly_r2, l_poly_r3;
 | |
|   OnlineData r_poly_r0, r_poly_r1, r_poly_r2, r_poly_r3;
 | |
|   OnlineData d_poly_r0, d_poly_r1, d_poly_r2, d_poly_r3;
 | |
|   OnlineData l_prob, r_prob;
 | |
|   OnlineData lane_width;
 | |
| 
 | |
|   Control t;
 | |
| 
 | |
|   // Equations of motion
 | |
|   f << dot(xx) == v_ref * cos(psi);
 | |
|   f << dot(yy) == v_ref * sin(psi);
 | |
|   f << dot(psi) == v_ref * delta * curvature_factor;
 | |
|   f << dot(delta) == t;
 | |
| 
 | |
|   auto lr_prob = l_prob + r_prob - l_prob * r_prob;
 | |
| 
 | |
|   auto poly_l = l_poly_r0*(xx*xx*xx) + l_poly_r1*(xx*xx) + l_poly_r2*xx + l_poly_r3;
 | |
|   auto poly_r = r_poly_r0*(xx*xx*xx) + r_poly_r1*(xx*xx) + r_poly_r2*xx + r_poly_r3;
 | |
|   auto poly_d = d_poly_r0*(xx*xx*xx) + d_poly_r1*(xx*xx) + d_poly_r2*xx + d_poly_r3;
 | |
| 
 | |
|   auto angle_d = atan(3*d_poly_r0*xx*xx + 2*d_poly_r1*xx + d_poly_r2);
 | |
| 
 | |
|   // When the lane is not visible, use an estimate of its position
 | |
|   auto weighted_left_lane = l_prob * poly_l + (1 - l_prob) * (poly_d + lane_width/2.0);
 | |
|   auto weighted_right_lane = r_prob * poly_r + (1 - r_prob) * (poly_d - lane_width/2.0);
 | |
| 
 | |
|   auto c_left_lane = exp(-(weighted_left_lane - yy));
 | |
|   auto c_right_lane = exp(weighted_right_lane - yy);
 | |
| 
 | |
|   // Running cost
 | |
|   Function h;
 | |
| 
 | |
|   // Distance errors
 | |
|   h << poly_d - yy;
 | |
|   h << lr_prob * c_left_lane;
 | |
|   h << lr_prob * c_right_lane;
 | |
| 
 | |
|   // Heading error
 | |
|   h << (v_ref + 1.0 ) * (angle_d - psi);
 | |
| 
 | |
|   // Angular rate error
 | |
|   h << (v_ref + 1.0 ) * t;
 | |
| 
 | |
|   BMatrix Q(5,5); Q.setAll(true);
 | |
|   // Q(0,0) = 1.0;
 | |
|   // Q(1,1) = 1.0;
 | |
|   // Q(2,2) = 1.0;
 | |
|   // Q(3,3) = 1.0;
 | |
|   // Q(4,4) = 2.0;
 | |
| 
 | |
|   // Terminal cost
 | |
|   Function hN;
 | |
| 
 | |
|   // Distance errors
 | |
|   hN << poly_d - yy;
 | |
|   hN << l_prob * c_left_lane;
 | |
|   hN << r_prob * c_right_lane;
 | |
| 
 | |
|   // Heading errors
 | |
|   hN << (2.0 * v_ref + 1.0 ) * (angle_d - psi);
 | |
| 
 | |
|   BMatrix QN(4,4); QN.setAll(true);
 | |
|   // QN(0,0) = 1.0;
 | |
|   // QN(1,1) = 1.0;
 | |
|   // QN(2,2) = 1.0;
 | |
|   // QN(3,3) = 1.0;
 | |
| 
 | |
|   // Non uniform time grid
 | |
|   // First 5 timesteps are 0.05, after that it's 0.15
 | |
|   DMatrix numSteps(20, 1);
 | |
|   for (int i = 0; i < 5; i++){
 | |
|     numSteps(i) = 1;
 | |
|   }
 | |
|   for (int i = 5; i < 20; i++){
 | |
|     numSteps(i) = 3;
 | |
|   }
 | |
| 
 | |
|   // Setup Optimal Control Problem
 | |
|   const double tStart = 0.0;
 | |
|   const double tEnd   = 2.5;
 | |
| 
 | |
|   OCP ocp( tStart, tEnd, numSteps);
 | |
|   ocp.subjectTo(f);
 | |
| 
 | |
|   ocp.minimizeLSQ(Q, h);
 | |
|   ocp.minimizeLSQEndTerm(QN, hN);
 | |
| 
 | |
|   // car can't go backward to avoid "circles"
 | |
|   ocp.subjectTo( deg2rad(-90) <= psi <= deg2rad(90));
 | |
|   // more than absolute max steer angle
 | |
|   ocp.subjectTo( deg2rad(-50) <= delta <= deg2rad(50));
 | |
|   ocp.setNOD(17);
 | |
| 
 | |
|   OCPexport mpc(ocp);
 | |
|   mpc.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON );
 | |
|   mpc.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING );
 | |
|   mpc.set( INTEGRATOR_TYPE, INT_RK4 );
 | |
|   mpc.set( NUM_INTEGRATOR_STEPS, 1 * controlHorizon);
 | |
|   mpc.set( MAX_NUM_QP_ITERATIONS, 500);
 | |
|   mpc.set( CG_USE_VARIABLE_WEIGHTING_MATRIX, YES);
 | |
| 
 | |
|   mpc.set( SPARSE_QP_SOLUTION, CONDENSING );
 | |
|   mpc.set( QP_SOLVER, QP_QPOASES );
 | |
|   mpc.set( HOTSTART_QP, YES );
 | |
|   mpc.set( GENERATE_TEST_FILE, NO);
 | |
|   mpc.set( GENERATE_MAKE_FILE, NO );
 | |
|   mpc.set( GENERATE_MATLAB_INTERFACE, NO );
 | |
|   mpc.set( GENERATE_SIMULINK_INTERFACE, NO );
 | |
| 
 | |
|   if (mpc.exportCode( "lib_mpc_export" ) != SUCCESSFUL_RETURN)
 | |
|     exit( EXIT_FAILURE );
 | |
| 
 | |
|   mpc.printDimensionsQP( );
 | |
| 
 | |
|   return EXIT_SUCCESS;
 | |
| }
 | |
| 
 |