openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

211 lines
10 KiB

/*
* Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
* Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
* Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
* Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
#ifndef {{ model.name }}_MODEL
#define {{ model.name }}_MODEL
#ifdef __cplusplus
extern "C" {
#endif
{%- if solver_options.hessian_approx %}
{%- set hessian_approx = solver_options.hessian_approx %}
{%- elif solver_options.sens_hess %}
{%- set hessian_approx = "EXACT" %}
{%- else %}
{%- set hessian_approx = "GAUSS_NEWTON" %}
{%- endif %}
{% if solver_options.integrator_type == "IRK" or solver_options.integrator_type == "LIFTED_IRK" %}
// implicit ODE
int {{ model.name }}_impl_dae_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_impl_dae_fun_work(int *, int *, int *, int *);
const int *{{ model.name }}_impl_dae_fun_sparsity_in(int);
const int *{{ model.name }}_impl_dae_fun_sparsity_out(int);
int {{ model.name }}_impl_dae_fun_n_in(void);
int {{ model.name }}_impl_dae_fun_n_out(void);
// implicit ODE
int {{ model.name }}_impl_dae_fun_jac_x_xdot_z(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_work(int *, int *, int *, int *);
const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_z_sparsity_in(int);
const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_z_sparsity_out(int);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_n_in(void);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_z_n_out(void);
// implicit ODE
int {{ model.name }}_impl_dae_jac_x_xdot_u_z(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_impl_dae_jac_x_xdot_u_z_work(int *, int *, int *, int *);
const int *{{ model.name }}_impl_dae_jac_x_xdot_u_z_sparsity_in(int);
const int *{{ model.name }}_impl_dae_jac_x_xdot_u_z_sparsity_out(int);
int {{ model.name }}_impl_dae_jac_x_xdot_u_z_n_in(void);
int {{ model.name }}_impl_dae_jac_x_xdot_u_z_n_out(void);
// implicit ODE - for lifted_irk
int {{ model.name }}_impl_dae_fun_jac_x_xdot_u(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_work(int *, int *, int *, int *);
const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_u_sparsity_in(int);
const int *{{ model.name }}_impl_dae_fun_jac_x_xdot_u_sparsity_out(int);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_n_in(void);
int {{ model.name }}_impl_dae_fun_jac_x_xdot_u_n_out(void);
{%- if hessian_approx == "EXACT" %}
int {{ model.name }}_impl_dae_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_impl_dae_hess_work(int *, int *, int *, int *);
const int *{{ model.name }}_impl_dae_hess_sparsity_in(int);
const int *{{ model.name }}_impl_dae_hess_sparsity_out(int);
int {{ model.name }}_impl_dae_hess_n_in(void);
int {{ model.name }}_impl_dae_hess_n_out(void);
{%- endif %}
{% elif solver_options.integrator_type == "GNSF" %}
/* GNSF Functions */
{% if model.gnsf.purely_linear != 1 %}
// phi_fun
int {{ model.name }}_gnsf_phi_fun(const double** arg, double** res, int* iw, double* w, void *mem);
int {{ model.name }}_gnsf_phi_fun_work(int *, int *, int *, int *);
const int *{{ model.name }}_gnsf_phi_fun_sparsity_in(int);
const int *{{ model.name }}_gnsf_phi_fun_sparsity_out(int);
int {{ model.name }}_gnsf_phi_fun_n_in(void);
int {{ model.name }}_gnsf_phi_fun_n_out(void);
// phi_fun_jac_y
int {{ model.name }}_gnsf_phi_fun_jac_y(const double** arg, double** res, int* iw, double* w, void *mem);
int {{ model.name }}_gnsf_phi_fun_jac_y_work(int *, int *, int *, int *);
const int *{{ model.name }}_gnsf_phi_fun_jac_y_sparsity_in(int);
const int *{{ model.name }}_gnsf_phi_fun_jac_y_sparsity_out(int);
int {{ model.name }}_gnsf_phi_fun_jac_y_n_in(void);
int {{ model.name }}_gnsf_phi_fun_jac_y_n_out(void);
// phi_jac_y_uhat
int {{ model.name }}_gnsf_phi_jac_y_uhat(const double** arg, double** res, int* iw, double* w, void *mem);
int {{ model.name }}_gnsf_phi_jac_y_uhat_work(int *, int *, int *, int *);
const int *{{ model.name }}_gnsf_phi_jac_y_uhat_sparsity_in(int);
const int *{{ model.name }}_gnsf_phi_jac_y_uhat_sparsity_out(int);
int {{ model.name }}_gnsf_phi_jac_y_uhat_n_in(void);
int {{ model.name }}_gnsf_phi_jac_y_uhat_n_out(void);
{% if model.gnsf.nontrivial_f_LO == 1 %}
// f_lo_fun_jac_x1k1uz
int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz(const double** arg, double** res, int* iw, double* w, void *mem);
int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_work(int *, int *, int *, int *);
const int *{{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_sparsity_in(int);
const int *{{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_sparsity_out(int);
int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_n_in(void);
int {{ model.name }}_gnsf_f_lo_fun_jac_x1k1uz_n_out(void);
{%- endif %}
{%- endif %}
// used to import model matrices
int {{ model.name }}_gnsf_get_matrices_fun(const double** arg, double** res, int* iw, double* w, void *mem);
int {{ model.name }}_gnsf_get_matrices_fun_work(int *, int *, int *, int *);
const int *{{ model.name }}_gnsf_get_matrices_fun_sparsity_in(int);
const int *{{ model.name }}_gnsf_get_matrices_fun_sparsity_out(int);
int {{ model.name }}_gnsf_get_matrices_fun_n_in(void);
int {{ model.name }}_gnsf_get_matrices_fun_n_out(void);
{% elif solver_options.integrator_type == "ERK" %}
/* explicit ODE */
// explicit ODE
int {{ model.name }}_expl_ode_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_expl_ode_fun_work(int *, int *, int *, int *);
const int *{{ model.name }}_expl_ode_fun_sparsity_in(int);
const int *{{ model.name }}_expl_ode_fun_sparsity_out(int);
int {{ model.name }}_expl_ode_fun_n_in(void);
int {{ model.name }}_expl_ode_fun_n_out(void);
// explicit forward VDE
int {{ model.name }}_expl_vde_forw(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_expl_vde_forw_work(int *, int *, int *, int *);
const int *{{ model.name }}_expl_vde_forw_sparsity_in(int);
const int *{{ model.name }}_expl_vde_forw_sparsity_out(int);
int {{ model.name }}_expl_vde_forw_n_in(void);
int {{ model.name }}_expl_vde_forw_n_out(void);
// explicit adjoint VDE
int {{ model.name }}_expl_vde_adj(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_expl_vde_adj_work(int *, int *, int *, int *);
const int *{{ model.name }}_expl_vde_adj_sparsity_in(int);
const int *{{ model.name }}_expl_vde_adj_sparsity_out(int);
int {{ model.name }}_expl_vde_adj_n_in(void);
int {{ model.name }}_expl_vde_adj_n_out(void);
{%- if hessian_approx == "EXACT" %}
int {{ model.name }}_expl_ode_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_expl_ode_hess_work(int *, int *, int *, int *);
const int *{{ model.name }}_expl_ode_hess_sparsity_in(int);
const int *{{ model.name }}_expl_ode_hess_sparsity_out(int);
int {{ model.name }}_expl_ode_hess_n_in(void);
int {{ model.name }}_expl_ode_hess_n_out(void);
{%- endif %}
{% elif solver_options.integrator_type == "DISCRETE" %}
{% if model.dyn_ext_fun_type == "casadi" %}
int {{ model.name }}_dyn_disc_phi_fun(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_dyn_disc_phi_fun_work(int *, int *, int *, int *);
const int *{{ model.name }}_dyn_disc_phi_fun_sparsity_in(int);
const int *{{ model.name }}_dyn_disc_phi_fun_sparsity_out(int);
int {{ model.name }}_dyn_disc_phi_fun_n_in(void);
int {{ model.name }}_dyn_disc_phi_fun_n_out(void);
int {{ model.name }}_dyn_disc_phi_fun_jac(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_dyn_disc_phi_fun_jac_work(int *, int *, int *, int *);
const int *{{ model.name }}_dyn_disc_phi_fun_jac_sparsity_in(int);
const int *{{ model.name }}_dyn_disc_phi_fun_jac_sparsity_out(int);
int {{ model.name }}_dyn_disc_phi_fun_jac_n_in(void);
int {{ model.name }}_dyn_disc_phi_fun_jac_n_out(void);
{%- if hessian_approx == "EXACT" %}
int {{ model.name }}_dyn_disc_phi_fun_jac_hess(const real_t** arg, real_t** res, int* iw, real_t* w, void *mem);
int {{ model.name }}_dyn_disc_phi_fun_jac_hess_work(int *, int *, int *, int *);
const int *{{ model.name }}_dyn_disc_phi_fun_jac_hess_sparsity_in(int);
const int *{{ model.name }}_dyn_disc_phi_fun_jac_hess_sparsity_out(int);
int {{ model.name }}_dyn_disc_phi_fun_jac_hess_n_in(void);
int {{ model.name }}_dyn_disc_phi_fun_jac_hess_n_out(void);
{%- endif %}
{% else %}
{%- if hessian_approx == "EXACT" %}
int {{ model.dyn_disc_fun_jac_hess }}(void **, void **, void *);
{% endif %}
int {{ model.dyn_disc_fun_jac }}(void **, void **, void *);
int {{ model.dyn_disc_fun }}(void **, void **, void *);
{% endif %}
{% endif %}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif // {{ model.name }}_MODEL