openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

70 lines
1.9 KiB

import numpy as np
from numbers import Number
class PIDController:
def __init__(self, k_p, k_i, k_f=0., k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100):
self._k_p = k_p
self._k_i = k_i
self._k_d = k_d
self.k_f = k_f # feedforward gain
if isinstance(self._k_p, Number):
self._k_p = [[0], [self._k_p]]
if isinstance(self._k_i, Number):
self._k_i = [[0], [self._k_i]]
if isinstance(self._k_d, Number):
self._k_d = [[0], [self._k_d]]
self.pos_limit = pos_limit
self.neg_limit = neg_limit
self.i_unwind_rate = 0.3 / rate
self.i_rate = 1.0 / rate
self.speed = 0.0
self.reset()
@property
def k_p(self):
return np.interp(self.speed, self._k_p[0], self._k_p[1])
@property
def k_i(self):
return np.interp(self.speed, self._k_i[0], self._k_i[1])
@property
def k_d(self):
return np.interp(self.speed, self._k_d[0], self._k_d[1])
@property
def error_integral(self):
return self.i/self.k_i
def reset(self):
self.p = 0.0
self.i = 0.0
self.d = 0.0
self.f = 0.0
self.control = 0
def update(self, error, error_rate=0.0, speed=0.0, override=False, feedforward=0., freeze_integrator=False):
self.speed = speed
self.p = float(error) * self.k_p
self.f = feedforward * self.k_f
self.d = error_rate * self.k_d
if override:
self.i -= self.i_unwind_rate * float(np.sign(self.i))
else:
if not freeze_integrator:
self.i = self.i + error * self.k_i * self.i_rate
# Clip i to prevent exceeding control limits
control_no_i = self.p + self.d + self.f
control_no_i = np.clip(control_no_i, self.neg_limit, self.pos_limit)
self.i = np.clip(self.i, self.neg_limit - control_no_i, self.pos_limit - control_no_i)
control = self.p + self.i + self.d + self.f
self.control = np.clip(control, self.neg_limit, self.pos_limit)
return self.control