openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

167 lines
6.9 KiB

from tinygrad import Tensor
from tinygrad.tensor import _to_np_dtype
from tinygrad.nn.onnx import OnnxRunner, OnnxValue
import numpy as np
import onnxruntime as ort
ort_options = ort.SessionOptions()
ort_options.log_severity_level = 3
def get_example_inputs(graph_inputs:dict[str, OnnxValue], config={}):
"""
Generate example input tensors based on the provided ONNX graph input specifications.
NOTE: This is not guaranteed to be reliable. It's a best-effort helper
that uses heuristics to guess input shapes and values.
Example:
from tinygrad.nn.onnx import OnnxRunner
from extra.onnx_helpers import get_example_inputs
inputs = get_example_inputs(OnnxRunner(model_path).graph_inputs)
"""
def _get_shape(onnx_shape: tuple[str|int]):
shape = []
for onnx_dim in onnx_shape:
match onnx_dim:
case int(): shape.append(onnx_dim)
case "width" | "height":
size = config.get("size", {})
shape.append(size) if isinstance(size, int) else shape.append(size.get(onnx_dim, 224))
case "sequence" | "sequence_length" | "decoder_sequence_length": shape.append(64)
case "encoder_sequence_length": shape.append(config.get("nb_max_frames", 64))
case "past_decoder_sequence_length" | "encoder_sequence_length_out": shape.append(64)
case "encoder_sequence_length / 2": shape.append(32)
case "batch_size": shape.append(1)
case "num_channels": shape.append(config.get("in_channels", 3))
case "num_channels_latent": shape.append(config.get("latent_channels", 4))
case "height_latent" | "width_latent": shape.append(config.get("sample_size", 1024) // 8)
case "feature_size": shape.append(config.get("num_mel_bins", 128))
case _: shape.append(1)
return shape
def _get_value(name, shape, dtype):
match name:
case "input_ids":
vocab_size = config.get("text_config", {}).get("vocab_size") or config.get("vocab_size", 32)
val = np.random.randint(0, vocab_size-1, shape)
case "attention_mask": val = np.random.randint(0, 2, size=shape)
case "token_type_ids": val = np.random.randint(0, config.get("type_vocab_size", 2), shape)
case "image_tensor": val = np.random.randint(0, 256, shape)
case "task_id": return Tensor(0, dtype=dtype)
case _: val = np.random.uniform(size=shape) * 8
return Tensor(val.astype(_to_np_dtype(dtype))).realize()
ret: dict[str, Tensor] = {}
for name, spec in graph_inputs.items():
assert not spec.is_optional and not spec.is_sequence, "only allow tensor input for now"
shape = _get_shape(spec.shape)
value = _get_value(name, shape, spec.dtype)
ret.update({name:value})
return ret
def _get_tinygrad_and_ort_np_outputs(onnx_file, inputs):
run_onnx = OnnxRunner(onnx_file)
ort_sess = ort.InferenceSession(onnx_file, ort_options, ["CPUExecutionProvider"])
np_inputs = {k:v.numpy() if isinstance(v, Tensor) else v for k,v in inputs.items()}
out_names = list(run_onnx.graph_outputs)
out_values = ort_sess.run(out_names, np_inputs)
ort_out = dict(zip(out_names, out_values))
tinygrad_out = run_onnx(inputs)
Tensor.realize(*(x for x in tinygrad_out.values() if x is not None))
tinygrad_out = {k:v.numpy() if v is not None else None for k,v in tinygrad_out.items()}
return tinygrad_out, ort_out
def validate(onnx_file, inputs, rtol=1e-5, atol=1e-5):
"""
Compares the final output tensors of an onnx model run in tinygrad and onnxruntime.
"""
tinygrad_out, ort_out = _get_tinygrad_and_ort_np_outputs(onnx_file, inputs)
assert tinygrad_out.keys() == ort_out.keys()
for k in tinygrad_out.keys():
tiny_v, onnx_v = tinygrad_out[k], ort_out[k]
if tiny_v is None: assert onnx_v is None, f"{k}: {tiny_v=}, {onnx_v=}"
else: np.testing.assert_allclose(tiny_v, onnx_v, rtol=rtol, atol=atol, err_msg=f"For tensor '{k}' in {tinygrad_out.keys()}")
def validate_all_intermediates(onnx_file, inputs, rtol=1e-5, atol=1e-5):
"""
Compares all intermediate node output of an onnx model run in tinygrad and onnxruntime.
"""
report = generate_node_output_report(onnx_file, inputs)
for i, node in enumerate(report):
node_name = node["node"]
op = node["op"]
outputs = node["outputs"]
for output in outputs:
output_name = output["name"]
tinygrad_out = output["tinygrad"]
ort_out = output["onnxruntime"]
try:
if tinygrad_out is None: assert ort_out is None, f"None outputs are not equal {tinygrad_out=} {ort_out=}"
else: np.testing.assert_allclose(tinygrad_out, ort_out, rtol=rtol, atol=atol)
print(f"Validated {i}: {op=} {node_name=} {output_name=}")
except AssertionError as e:
print(f"FAILED {i}: {op=} {node_name=} {output_name=}")
print(str(e).strip() + "\n")
def generate_node_output_report(onnx_file, inputs):
"""
Build a report of all ONNX node outputs from tinygrad and onnxruntime
Returns:
A list of dictionaries, where each entry corresponds to one
node in the ONNX graph. The structure is as follows:
[
{
"node": str, # The name of the ONNX node.
"op": str, # The operation type of the ONNX node.
"outputs": [
{
"name": str, # The name of the output tensor.
"tinygrad": np.ndarray | None, # The output value from tinygrad.
"onnxruntime": np.ndarray | None, # The output value from onnxruntime.
},
...
]
},
...
]
"""
import onnx_graphsurgeon as gs
import onnx
import tempfile
# rewrite the model to output all the node outputs
# `infer_shapes` here tries to fill the shapes and dtypes of intermediate values which graphsurgeon requires when assigning them as outputs
inferred_model = onnx.shape_inference.infer_shapes(onnx.load(onnx_file))
model = gs.import_onnx(inferred_model)
model_nodes = model.nodes
node_outputs = [n.outputs for n in model.nodes]
model.outputs = [
each_output for outputs in node_outputs for each_output in outputs
if not (each_output.dtype is None and each_output.shape is None) # output with None dtype and None shape is likely a `None` value
]
rewritten_model = gs.export_onnx(model)
# TODO: remove this once ORT supports 1.18.0
if getattr(rewritten_model, "ir_version", 0) > 10:
rewritten_model.ir_version = 10
with tempfile.NamedTemporaryFile(suffix=".onnx") as f:
onnx.save(rewritten_model, f.name)
rewritten_model_path = f.name
tinygrad_out, ort_out = _get_tinygrad_and_ort_np_outputs(rewritten_model_path, inputs)
report = []
for node in model_nodes:
outputs = []
for each_output in node.outputs:
if each_output.dtype is None and each_output.shape is None:
continue
name = each_output.name
tinygrad_output = tinygrad_out[name]
ort_output = ort_out[name]
outputs.append({"name": name, "tinygrad": tinygrad_output, "onnxruntime": ort_output})
report.append({"node": node.name, "op": node.op, "outputs": outputs})
return report