openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

108 lines
3.6 KiB

import unittest
from tinygrad import Variable
from tinygrad.tensor import Tensor
class TestSymbolic(unittest.TestCase):
def assert_tuple_equal(self, x, y):
for a,b in zip(x,y): self.assertFalse(a != b)
def test_cat_dim0_is_expanded(self):
i = Variable("i", 1, 5).bind(3)
j = Variable("j", 1, 5).bind(3)
k = Variable("k", 1, 5).bind(3)
t = Tensor.rand(5, 4)[:i].cat(Tensor.rand(5, 4)[:j], dim=0).cat(Tensor.rand(5, 4)[:k], dim=0)
self.assert_tuple_equal(t.shape, (i+j+k, 4))
t = Tensor.rand(5, 3)[:i].cat(Tensor.rand(5, 3)[:i], dim=0).cat(Tensor.rand(3, 3), dim=0)
self.assert_tuple_equal(t.shape, (2*i+3, 3))
def test_cat_dim1_strides(self):
i = Variable("i", 1, 5).bind(4)
j = Variable("j", 1, 5).bind(4)
k = Variable("k", 1, 5).bind(4)
t = Tensor.rand(3, 5)[:, :i].cat(Tensor.rand(3, 5)[:, :j], dim=1).cat(Tensor.rand(3, 5)[:, :k], dim=1)
self.assert_tuple_equal(t.shape, (3, i+j+k))
class TestSymbolicVarVals(unittest.TestCase):
def assert_equal(self, x, y): self.assertFalse(x != y)
def test_shrink_unbind(self):
v = Variable("v", 1, 100)
bv = Variable("v", 1, 100).bind(2)
t = Tensor.rand(3, 4).shrink(((0,bv),(0,4)))
unbound_st, var_val = t.uop.unbind_all()
assert var_val == {v: 2}
t = Tensor.rand(3, 4).shrink(((bv, bv+1), (0, 4)))
unbound_st, var_val = t.uop.unbind_all()
assert var_val == {v: 2}
class TestSymbolicReshape(unittest.TestCase):
def test_reshape(self):
a = Tensor.rand(5, 4)
b = Tensor.rand(5, 6)
for i in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
ret = a[:vi]
ret = ret.reshape((vi, 4))
assert ret.shape == (vi, 4)
ret = b[:vi]
ret = ret.reshape((vi, 2, 3))
assert ret.shape == (vi, 2, 3)
def test_two_symbol_reshape(self):
t = Tensor.rand(5, 5)
for i in range(1, 6):
for j in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
vj = Variable("j", 1, 5).bind(j)
ret = t[:vi, :vj]
ret = ret.reshape(vj, vi)
assert ret.shape == (vj, vi)
ret = ret.reshape(vi, vj)
assert ret.shape == (vi, vj)
ret = ret.reshape(1, vi*vj)
assert ret.shape == (1, vi*vj)
class TestSymbolicExpand(unittest.TestCase):
def test_expand_into_symbols(self):
vi = Variable("i", 1, 5).bind(3)
vj = Variable("j", 1, 5).bind(3)
a = Tensor([[1], [2], [3]]).expand((3, vi))
assert a.shape == (3, vi)
a = a.reshape(3, vi, 1).expand((3, vi, vj))
assert a.shape == (3, vi, vj)
def test_plus_expands_constant(self):
a = Tensor.rand(3, 5)
for i in range(1, 6):
vi = Variable("i", 1, 5).bind(i)
ret = a[:, :vi]
ret = ret + 1
self.assertTupleEqual(ret.shape, (3, vi))
def test_pad_then_expand_into_symbols(self):
vi = Variable("i", 1, 10).bind(3)
a = Tensor(1).unsqueeze(0).pad((0, 24)).unsqueeze(0).expand((vi, 25))
self.assertEqual(a.shape, (vi, 25))
self.assertEqual(a.reshape(25*vi).shape, (vi*25,))
self.assertEqual(a.reshape(vi*25).shape, (vi*25,))
class TestSymbolicShrink(unittest.TestCase):
def test_shrink_symbols_simple(self):
vi = Variable("i", 1, 5)
t = Tensor.rand(5, 5).shrink(((0, 5),(0,vi)))
assert t.shape == (5, vi)
def test_shrink_symbols(self):
vi = Variable("i", 1, 5)
t = Tensor.rand(3, 5).shrink(((0, 2), (vi, vi+1)))
assert t.shape == (2, 1)
class TestSymbolicPad(unittest.TestCase):
def test_pad(self):
v = Variable("v", 1, 100).bind(5)
t = Tensor.ones(100)[:v].pad(((4, 0),))
t = t[:9]
assert t.tolist() == [0,0,0,0,1,1,1,1,1]
if __name__ == '__main__':
unittest.main()