You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.2 KiB
177 lines
6.2 KiB
import numpy as np
|
|
from typing import Any
|
|
from functools import cache
|
|
|
|
from cereal import log
|
|
from openpilot.common.transformations.orientation import rot_from_euler, euler_from_rot
|
|
|
|
|
|
@cache
|
|
def fft_next_good_size(n: int) -> int:
|
|
"""
|
|
smallest composite of 2, 3, 5, 7, 11 that is >= n
|
|
inspired by pocketfft
|
|
"""
|
|
if n <= 6:
|
|
return n
|
|
best, f2 = 2 * n, 1
|
|
while f2 < best:
|
|
f23 = f2
|
|
while f23 < best:
|
|
f235 = f23
|
|
while f235 < best:
|
|
f2357 = f235
|
|
while f2357 < best:
|
|
f235711 = f2357
|
|
while f235711 < best:
|
|
best = f235711 if f235711 >= n else best
|
|
f235711 *= 11
|
|
f2357 *= 7
|
|
f235 *= 5
|
|
f23 *= 3
|
|
f2 *= 2
|
|
return best
|
|
|
|
|
|
def parabolic_peak_interp(R, max_index):
|
|
if max_index == 0 or max_index == len(R) - 1:
|
|
return max_index
|
|
|
|
y_m1, y_0, y_p1 = R[max_index - 1], R[max_index], R[max_index + 1]
|
|
offset = 0.5 * (y_p1 - y_m1) / (2 * y_0 - y_p1 - y_m1)
|
|
|
|
return max_index + offset
|
|
|
|
|
|
def rotate_cov(rot_matrix, cov_in):
|
|
return rot_matrix @ cov_in @ rot_matrix.T
|
|
|
|
|
|
def rotate_std(rot_matrix, std_in):
|
|
return np.sqrt(np.diag(rotate_cov(rot_matrix, np.diag(std_in**2))))
|
|
|
|
|
|
class NPQueue:
|
|
def __init__(self, maxlen: int, rowsize: int) -> None:
|
|
self.maxlen = maxlen
|
|
self.arr = np.empty((0, rowsize))
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.arr)
|
|
|
|
def append(self, pt: list[float]) -> None:
|
|
if len(self.arr) < self.maxlen:
|
|
self.arr = np.append(self.arr, [pt], axis=0)
|
|
else:
|
|
self.arr[:-1] = self.arr[1:]
|
|
self.arr[-1] = pt
|
|
|
|
|
|
class PointBuckets:
|
|
def __init__(self, x_bounds: list[tuple[float, float]], min_points: list[float], min_points_total: int, points_per_bucket: int, rowsize: int) -> None:
|
|
self.x_bounds = x_bounds
|
|
self.buckets = {bounds: NPQueue(maxlen=points_per_bucket, rowsize=rowsize) for bounds in x_bounds}
|
|
self.buckets_min_points = dict(zip(x_bounds, min_points, strict=True))
|
|
self.min_points_total = min_points_total
|
|
|
|
def __len__(self) -> int:
|
|
return sum([len(v) for v in self.buckets.values()])
|
|
|
|
def is_valid(self) -> bool:
|
|
individual_buckets_valid = all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values(), strict=True))
|
|
total_points_valid = self.__len__() >= self.min_points_total
|
|
return individual_buckets_valid and total_points_valid
|
|
|
|
def is_calculable(self) -> bool:
|
|
return all(len(v) > 0 for v in self.buckets.values())
|
|
|
|
def add_point(self, x: float, y: float) -> None:
|
|
raise NotImplementedError
|
|
|
|
def get_points(self, num_points: int = None) -> Any:
|
|
points = np.vstack([x.arr for x in self.buckets.values()])
|
|
if num_points is None:
|
|
return points
|
|
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
|
|
|
|
def load_points(self, points: list[list[float]]) -> None:
|
|
for point in points:
|
|
self.add_point(*point)
|
|
|
|
|
|
class ParameterEstimator:
|
|
""" Base class for parameter estimators """
|
|
def reset(self) -> None:
|
|
raise NotImplementedError
|
|
|
|
def handle_log(self, t: int, which: str, msg: log.Event) -> None:
|
|
raise NotImplementedError
|
|
|
|
def get_msg(self, valid: bool, with_points: bool) -> log.Event:
|
|
raise NotImplementedError
|
|
|
|
|
|
class Measurement:
|
|
x, y, z = (property(lambda self: self.xyz[0]), property(lambda self: self.xyz[1]), property(lambda self: self.xyz[2]))
|
|
x_std, y_std, z_std = (property(lambda self: self.xyz_std[0]), property(lambda self: self.xyz_std[1]), property(lambda self: self.xyz_std[2]))
|
|
roll, pitch, yaw = x, y, z
|
|
roll_std, pitch_std, yaw_std = x_std, y_std, z_std
|
|
|
|
def __init__(self, xyz: np.ndarray, xyz_std: np.ndarray):
|
|
self.xyz: np.ndarray = xyz
|
|
self.xyz_std: np.ndarray = xyz_std
|
|
|
|
@classmethod
|
|
def from_measurement_xyz(cls, measurement: log.LivePose.XYZMeasurement) -> 'Measurement':
|
|
return cls(
|
|
xyz=np.array([measurement.x, measurement.y, measurement.z]),
|
|
xyz_std=np.array([measurement.xStd, measurement.yStd, measurement.zStd])
|
|
)
|
|
|
|
|
|
class Pose:
|
|
def __init__(self, orientation: Measurement, velocity: Measurement, acceleration: Measurement, angular_velocity: Measurement):
|
|
self.orientation = orientation
|
|
self.velocity = velocity
|
|
self.acceleration = acceleration
|
|
self.angular_velocity = angular_velocity
|
|
|
|
@classmethod
|
|
def from_live_pose(cls, live_pose: log.LivePose) -> 'Pose':
|
|
return Pose(
|
|
orientation=Measurement.from_measurement_xyz(live_pose.orientationNED),
|
|
velocity=Measurement.from_measurement_xyz(live_pose.velocityDevice),
|
|
acceleration=Measurement.from_measurement_xyz(live_pose.accelerationDevice),
|
|
angular_velocity=Measurement.from_measurement_xyz(live_pose.angularVelocityDevice)
|
|
)
|
|
|
|
|
|
class PoseCalibrator:
|
|
def __init__(self):
|
|
self.calib_valid = False
|
|
self.calib_from_device = np.eye(3)
|
|
|
|
def _transform_calib_from_device(self, meas: Measurement):
|
|
new_xyz = self.calib_from_device @ meas.xyz
|
|
new_xyz_std = rotate_std(self.calib_from_device, meas.xyz_std)
|
|
return Measurement(new_xyz, new_xyz_std)
|
|
|
|
def _ned_from_calib(self, orientation: Measurement):
|
|
ned_from_device = rot_from_euler(orientation.xyz)
|
|
ned_from_calib = ned_from_device @ self.calib_from_device.T
|
|
ned_from_calib_euler_meas = Measurement(euler_from_rot(ned_from_calib), np.full(3, np.nan))
|
|
return ned_from_calib_euler_meas
|
|
|
|
def build_calibrated_pose(self, pose: Pose) -> Pose:
|
|
ned_from_calib_euler = self._ned_from_calib(pose.orientation)
|
|
angular_velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
|
|
acceleration_calib = self._transform_calib_from_device(pose.acceleration)
|
|
velocity_calib = self._transform_calib_from_device(pose.angular_velocity)
|
|
|
|
return Pose(ned_from_calib_euler, velocity_calib, acceleration_calib, angular_velocity_calib)
|
|
|
|
def feed_live_calib(self, live_calib: log.LiveCalibrationData):
|
|
calib_rpy = np.array(live_calib.rpyCalib)
|
|
device_from_calib = rot_from_euler(calib_rpy)
|
|
self.calib_from_device = device_from_calib.T
|
|
self.calib_valid = live_calib.calStatus == log.LiveCalibrationData.Status.calibrated
|
|
|