openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

131 lines
4.8 KiB

#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
import os
from casadi import *
from .utils import ALLOWED_CASADI_VERSIONS, is_empty, casadi_version_warning
def generate_c_code_gnsf( model, opts ):
casadi_version = CasadiMeta.version()
casadi_opts = dict(mex=False, casadi_int='int', casadi_real='double')
if casadi_version not in (ALLOWED_CASADI_VERSIONS):
casadi_version_warning(casadi_version)
model_name = model.name
code_export_dir = opts["code_export_directory"]
# set up directory
if not os.path.exists(code_export_dir):
os.makedirs(code_export_dir)
cwd = os.getcwd()
os.chdir(code_export_dir)
model_dir = model_name + '_model'
if not os.path.exists(model_dir):
os.mkdir(model_dir)
model_dir_location = os.path.join('.', model_dir)
os.chdir(model_dir_location)
# obtain gnsf dimensions
get_matrices_fun = model.get_matrices_fun
phi_fun = model.phi_fun
size_gnsf_A = get_matrices_fun.size_out(0)
gnsf_nx1 = size_gnsf_A[1]
gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
gnsf_nuhat = max(phi_fun.size_in(1))
gnsf_ny = max(phi_fun.size_in(0))
gnsf_nout = max(phi_fun.size_out(0))
# set up expressions
# if the model uses MX because of cost/constraints
# the DAE can be exported as SX -> detect GNSF in Matlab
# -> evaluated SX GNSF functions with MX.
u = model.u
if isinstance(u, casadi.MX):
symbol = MX.sym
else:
symbol = SX.sym
y = symbol("y", gnsf_ny, 1)
uhat = symbol("uhat", gnsf_nuhat, 1)
p = model.p
x1 = symbol("gnsf_x1", gnsf_nx1, 1)
x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
z1 = symbol("gnsf_z1", gnsf_nz1, 1)
dummy = symbol("gnsf_dummy", 1, 1)
empty_var = symbol("gnsf_empty_var", 0, 0)
## generate C code
fun_name = model_name + '_gnsf_phi_fun'
phi_fun_ = Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
phi_fun_.generate(fun_name, casadi_opts)
fun_name = model_name + '_gnsf_phi_fun_jac_y'
phi_fun_jac_y = model.phi_fun_jac_y
phi_fun_jac_y_ = Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
phi_fun_jac_y_.generate(fun_name, casadi_opts)
fun_name = model_name + '_gnsf_phi_jac_y_uhat'
phi_jac_y_uhat = model.phi_jac_y_uhat
phi_jac_y_uhat_ = Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
phi_jac_y_uhat_.generate(fun_name, casadi_opts)
fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
# avoid codegeneration issue
if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
f_lo_fun_jac_x1k1uz_eval = [empty_var]
f_lo_fun_jac_x1k1uz_ = Function(fun_name, [x1, x1dot, z1, u, p],
f_lo_fun_jac_x1k1uz_eval)
f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_opts)
fun_name = model_name + '_gnsf_get_matrices_fun'
get_matrices_fun_ = Function(fun_name, [dummy], get_matrices_fun(1))
get_matrices_fun_.generate(fun_name, casadi_opts)
# remove fields for json dump
del model.phi_fun
del model.phi_fun_jac_y
del model.phi_jac_y_uhat
del model.f_lo_fun_jac_x1k1uz
del model.get_matrices_fun
os.chdir(cwd)
return