You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							105 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
	
	
							105 lines
						
					
					
						
							3.9 KiB
						
					
					
				| import numpy as np
 | |
| from cereal import log
 | |
| from common.filter_simple import FirstOrderFilter
 | |
| from common.numpy_fast import interp
 | |
| from common.realtime import DT_MDL
 | |
| from selfdrive.hardware import EON, TICI
 | |
| from selfdrive.swaglog import cloudlog
 | |
| 
 | |
| 
 | |
| TRAJECTORY_SIZE = 33
 | |
| # camera offset is meters from center car to camera
 | |
| if EON:
 | |
|   CAMERA_OFFSET = 0.06
 | |
|   PATH_OFFSET = 0.0
 | |
| elif TICI:
 | |
|   CAMERA_OFFSET = -0.04
 | |
|   PATH_OFFSET = -0.04
 | |
| else:
 | |
|   CAMERA_OFFSET = 0.0
 | |
|   PATH_OFFSET = 0.0
 | |
| 
 | |
| 
 | |
| class LanePlanner:
 | |
|   def __init__(self, wide_camera=False):
 | |
|     self.ll_t = np.zeros((TRAJECTORY_SIZE,))
 | |
|     self.ll_x = np.zeros((TRAJECTORY_SIZE,))
 | |
|     self.lll_y = np.zeros((TRAJECTORY_SIZE,))
 | |
|     self.rll_y = np.zeros((TRAJECTORY_SIZE,))
 | |
|     self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL)
 | |
|     self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL)
 | |
|     self.lane_width = 3.7
 | |
| 
 | |
|     self.lll_prob = 0.
 | |
|     self.rll_prob = 0.
 | |
|     self.d_prob = 0.
 | |
| 
 | |
|     self.lll_std = 0.
 | |
|     self.rll_std = 0.
 | |
| 
 | |
|     self.l_lane_change_prob = 0.
 | |
|     self.r_lane_change_prob = 0.
 | |
| 
 | |
|     self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET
 | |
|     self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET
 | |
| 
 | |
|   def parse_model(self, md):
 | |
|     lane_lines = md.laneLines
 | |
|     if len(lane_lines) == 4 and len(lane_lines[0].t) == TRAJECTORY_SIZE:
 | |
|       self.ll_t = (np.array(lane_lines[1].t) + np.array(lane_lines[2].t))/2
 | |
|       # left and right ll x is the same
 | |
|       self.ll_x = lane_lines[1].x
 | |
|       # only offset left and right lane lines; offsetting path does not make sense
 | |
|       self.lll_y = np.array(lane_lines[1].y) - self.camera_offset
 | |
|       self.rll_y = np.array(lane_lines[2].y) - self.camera_offset
 | |
|       self.lll_prob = md.laneLineProbs[1]
 | |
|       self.rll_prob = md.laneLineProbs[2]
 | |
|       self.lll_std = md.laneLineStds[1]
 | |
|       self.rll_std = md.laneLineStds[2]
 | |
| 
 | |
|     desire_state = md.meta.desireState
 | |
|     if len(desire_state):
 | |
|       self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
 | |
|       self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
 | |
| 
 | |
|   def get_d_path(self, v_ego, path_t, path_xyz):
 | |
|     # Reduce reliance on lanelines that are too far apart or
 | |
|     # will be in a few seconds
 | |
|     path_xyz[:, 1] -= self.path_offset
 | |
|     l_prob, r_prob = self.lll_prob, self.rll_prob
 | |
|     width_pts = self.rll_y - self.lll_y
 | |
|     prob_mods = []
 | |
|     for t_check in [0.0, 1.5, 3.0]:
 | |
|       width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
 | |
|       prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
 | |
|     mod = min(prob_mods)
 | |
|     l_prob *= mod
 | |
|     r_prob *= mod
 | |
| 
 | |
|     # Reduce reliance on uncertain lanelines
 | |
|     l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
 | |
|     r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
 | |
|     l_prob *= l_std_mod
 | |
|     r_prob *= r_std_mod
 | |
| 
 | |
|     # Find current lanewidth
 | |
|     self.lane_width_certainty.update(l_prob * r_prob)
 | |
|     current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
 | |
|     self.lane_width_estimate.update(current_lane_width)
 | |
|     speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
 | |
|     self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \
 | |
|                       (1 - self.lane_width_certainty.x) * speed_lane_width
 | |
| 
 | |
|     clipped_lane_width = min(4.0, self.lane_width)
 | |
|     path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
 | |
|     path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
 | |
| 
 | |
|     self.d_prob = l_prob + r_prob - l_prob * r_prob
 | |
|     lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
 | |
|     safe_idxs = np.isfinite(self.ll_t)
 | |
|     if safe_idxs[0]:
 | |
|       lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs])
 | |
|       path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
 | |
|     else:
 | |
|       cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring")
 | |
|     return path_xyz
 | |
| 
 |