You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							164 lines
						
					
					
						
							6.6 KiB
						
					
					
				
			
		
		
	
	
							164 lines
						
					
					
						
							6.6 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import math
 | |
| import numpy as np
 | |
| from common.numpy_fast import clip, interp
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from common.conversions import Conversions as CV
 | |
| from common.filter_simple import FirstOrderFilter
 | |
| from common.params import Params
 | |
| from common.realtime import DT_MDL
 | |
| from selfdrive.modeld.constants import T_IDXS
 | |
| from selfdrive.controls.lib.longcontrol import LongCtrlState
 | |
| from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
 | |
| from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
 | |
| from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N
 | |
| from system.swaglog import cloudlog
 | |
| 
 | |
| LON_MPC_STEP = 0.2  # first step is 0.2s
 | |
| AWARENESS_DECEL = -0.2  # car smoothly decel at .2m/s^2 when user is distracted
 | |
| A_CRUISE_MIN = -1.2
 | |
| A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
 | |
| A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
 | |
| 
 | |
| # Lookup table for turns
 | |
| _A_TOTAL_MAX_V = [1.7, 3.2]
 | |
| _A_TOTAL_MAX_BP = [20., 40.]
 | |
| 
 | |
| 
 | |
| def get_max_accel(v_ego):
 | |
|   return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
 | |
| 
 | |
| 
 | |
| def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
 | |
|   """
 | |
|   This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
 | |
|   this should avoid accelerating when losing the target in turns
 | |
|   """
 | |
| 
 | |
|   # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
 | |
|   # The lookup table for turns should also be updated if we do this
 | |
|   a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
 | |
|   a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
 | |
|   a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
 | |
| 
 | |
|   return [a_target[0], min(a_target[1], a_x_allowed)]
 | |
| 
 | |
| 
 | |
| class LongitudinalPlanner:
 | |
|   def __init__(self, CP, init_v=0.0, init_a=0.0):
 | |
|     self.CP = CP
 | |
|     self.params = Params()
 | |
|     self.param_read_counter = 0
 | |
| 
 | |
|     self.mpc = LongitudinalMpc()
 | |
|     self.read_param()
 | |
| 
 | |
|     self.fcw = False
 | |
| 
 | |
|     self.a_desired = init_a
 | |
|     self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL)
 | |
| 
 | |
|     self.v_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.a_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.j_desired_trajectory = np.zeros(CONTROL_N)
 | |
|     self.solverExecutionTime = 0.0
 | |
| 
 | |
|   def read_param(self):
 | |
|     e2e = self.params.get_bool('EndToEndLong') and self.CP.openpilotLongitudinalControl
 | |
|     self.mpc.mode = 'blended' if e2e else 'acc'
 | |
| 
 | |
|   def parse_model(self, model_msg):
 | |
|     if (len(model_msg.position.x) == 33 and
 | |
|        len(model_msg.velocity.x) == 33 and
 | |
|        len(model_msg.acceleration.x) == 33):
 | |
|       x = np.interp(T_IDXS_MPC, T_IDXS, model_msg.position.x)
 | |
|       v = np.interp(T_IDXS_MPC, T_IDXS, model_msg.velocity.x)
 | |
|       a = np.interp(T_IDXS_MPC, T_IDXS, model_msg.acceleration.x)
 | |
|       j = np.zeros(len(T_IDXS_MPC))
 | |
|     else:
 | |
|       x = np.zeros(len(T_IDXS_MPC))
 | |
|       v = np.zeros(len(T_IDXS_MPC))
 | |
|       a = np.zeros(len(T_IDXS_MPC))
 | |
|       j = np.zeros(len(T_IDXS_MPC))
 | |
|     return x, v, a, j
 | |
| 
 | |
|   def update(self, sm, read=True):
 | |
|     if self.param_read_counter % 50 == 0 and read:
 | |
|       self.read_param()
 | |
|     self.param_read_counter += 1
 | |
| 
 | |
|     v_ego = sm['carState'].vEgo
 | |
|     v_cruise_kph = sm['controlsState'].vCruise
 | |
|     v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
 | |
|     v_cruise = v_cruise_kph * CV.KPH_TO_MS
 | |
| 
 | |
|     long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
 | |
|     force_slow_decel = sm['controlsState'].forceDecel
 | |
| 
 | |
|     # Reset current state when not engaged, or user is controlling the speed
 | |
|     reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled
 | |
| 
 | |
|     # No change cost when user is controlling the speed, or when standstill
 | |
|     prev_accel_constraint = not (reset_state or sm['carState'].standstill)
 | |
| 
 | |
|     accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
 | |
|     accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
 | |
| 
 | |
|     if reset_state:
 | |
|       self.v_desired_filter.x = v_ego
 | |
|       # Clip aEgo to cruise limits to prevent large accelerations when becoming active
 | |
|       self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
 | |
| 
 | |
|     # Prevent divergence, smooth in current v_ego
 | |
|     self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
 | |
| 
 | |
|     if force_slow_decel:
 | |
|       # if required so, force a smooth deceleration
 | |
|       accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
 | |
|       accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
 | |
|     # clip limits, cannot init MPC outside of bounds
 | |
|     accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05)
 | |
|     accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
 | |
| 
 | |
|     self.mpc.set_weights(prev_accel_constraint)
 | |
|     self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
 | |
|     self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
 | |
|     x, v, a, j = self.parse_model(sm['modelV2'])
 | |
|     self.mpc.update(sm['carState'], sm['radarState'], v_cruise, x, v, a, j)
 | |
| 
 | |
|     self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution)
 | |
|     self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution)
 | |
|     self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
 | |
| 
 | |
|     # TODO counter is only needed because radar is glitchy, remove once radar is gone
 | |
|     # TODO write fcw in e2e_long mode
 | |
|     self.fcw = self.mpc.mode == 'acc' and self.mpc.crash_cnt > 5 and not sm['carState'].standstill
 | |
|     if self.fcw:
 | |
|       cloudlog.info("FCW triggered")
 | |
| 
 | |
|     # Interpolate 0.05 seconds and save as starting point for next iteration
 | |
|     a_prev = self.a_desired
 | |
|     self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
 | |
|     self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
 | |
| 
 | |
|   def publish(self, sm, pm):
 | |
|     plan_send = messaging.new_message('longitudinalPlan')
 | |
| 
 | |
|     plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
 | |
| 
 | |
|     longitudinalPlan = plan_send.longitudinalPlan
 | |
|     longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
 | |
|     longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
 | |
| 
 | |
|     longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
 | |
|     longitudinalPlan.accels = self.a_desired_trajectory.tolist()
 | |
|     longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
 | |
| 
 | |
|     longitudinalPlan.hasLead = sm['radarState'].leadOne.status
 | |
|     longitudinalPlan.longitudinalPlanSource = self.mpc.source
 | |
|     longitudinalPlan.fcw = self.fcw
 | |
| 
 | |
|     longitudinalPlan.solverExecutionTime = self.mpc.solve_time
 | |
| 
 | |
|     pm.send('longitudinalPlan', plan_send)
 | |
| 
 |