You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							36 lines
						
					
					
						
							1.3 KiB
						
					
					
				
			
		
		
	
	
							36 lines
						
					
					
						
							1.3 KiB
						
					
					
				| import onnx
 | |
| import onnxruntime as ort
 | |
| import numpy as np
 | |
| import itertools
 | |
| 
 | |
| ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
 | |
| 
 | |
| def attributeproto_fp16_to_fp32(attr):
 | |
|   float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
 | |
|   attr.data_type = 1
 | |
|   attr.raw_data = float32_list.astype(np.float32).tobytes()
 | |
| 
 | |
| def convert_fp16_to_fp32(model):
 | |
|   for i in model.graph.initializer:
 | |
|     if i.data_type == 10:
 | |
|       attributeproto_fp16_to_fp32(i)
 | |
|   for i in itertools.chain(model.graph.input, model.graph.output):
 | |
|     if i.type.tensor_type.elem_type == 10:
 | |
|       i.type.tensor_type.elem_type = 1
 | |
|   for i in model.graph.node:
 | |
|     if i.op_type == 'Cast' and i.attribute[0].i == 10:
 | |
|       i.attribute[0].i = 1
 | |
|     for a in i.attribute:
 | |
|       if hasattr(a, 't'):
 | |
|         if a.t.data_type == 10:
 | |
|           attributeproto_fp16_to_fp32(a.t)
 | |
|   return model.SerializeToString()
 | |
| 
 | |
| 
 | |
| def make_onnx_cpu_runner(model_path):
 | |
|   options = ort.SessionOptions()
 | |
|   options.intra_op_num_threads = 4
 | |
|   options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
 | |
|   options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
 | |
|   model_data = convert_fp16_to_fp32(onnx.load(model_path))
 | |
|   return ort.InferenceSession(model_data,  options, providers=['CPUExecutionProvider'])
 | |
| 
 |