You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
11 KiB
242 lines
11 KiB
#!/usr/bin/env python3
|
|
import os
|
|
from cereal import car
|
|
from math import fabs, exp
|
|
from panda import Panda
|
|
|
|
from openpilot.common.basedir import BASEDIR
|
|
from openpilot.common.conversions import Conversions as CV
|
|
from openpilot.selfdrive.car import create_button_events, get_safety_config
|
|
from openpilot.selfdrive.car.gm.radar_interface import RADAR_HEADER_MSG
|
|
from openpilot.selfdrive.car.gm.values import CAR, CruiseButtons, CarControllerParams, EV_CAR, CAMERA_ACC_CAR, CanBus
|
|
from openpilot.selfdrive.car.interfaces import CarInterfaceBase, TorqueFromLateralAccelCallbackType, FRICTION_THRESHOLD, LatControlInputs, NanoFFModel
|
|
from openpilot.selfdrive.controls.lib.drive_helpers import get_friction
|
|
|
|
ButtonType = car.CarState.ButtonEvent.Type
|
|
EventName = car.CarEvent.EventName
|
|
GearShifter = car.CarState.GearShifter
|
|
TransmissionType = car.CarParams.TransmissionType
|
|
NetworkLocation = car.CarParams.NetworkLocation
|
|
BUTTONS_DICT = {CruiseButtons.RES_ACCEL: ButtonType.accelCruise, CruiseButtons.DECEL_SET: ButtonType.decelCruise,
|
|
CruiseButtons.MAIN: ButtonType.altButton3, CruiseButtons.CANCEL: ButtonType.cancel}
|
|
|
|
|
|
NON_LINEAR_TORQUE_PARAMS = {
|
|
CAR.BOLT_EUV: [2.6531724862969748, 1.0, 0.1919764879840985, 0.009054123646805178],
|
|
CAR.ACADIA: [4.78003305, 1.0, 0.3122, 0.05591772],
|
|
CAR.SILVERADO: [3.29974374, 1.0, 0.25571356, 0.0465122]
|
|
}
|
|
|
|
NEURAL_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/neural_ff_weights.json')
|
|
|
|
|
|
class CarInterface(CarInterfaceBase):
|
|
@staticmethod
|
|
def get_pid_accel_limits(CP, current_speed, cruise_speed):
|
|
return CarControllerParams.ACCEL_MIN, CarControllerParams.ACCEL_MAX
|
|
|
|
# Determined by iteratively plotting and minimizing error for f(angle, speed) = steer.
|
|
@staticmethod
|
|
def get_steer_feedforward_volt(desired_angle, v_ego):
|
|
desired_angle *= 0.02904609
|
|
sigmoid = desired_angle / (1 + fabs(desired_angle))
|
|
return 0.10006696 * sigmoid * (v_ego + 3.12485927)
|
|
|
|
def get_steer_feedforward_function(self):
|
|
if self.CP.carFingerprint == CAR.VOLT:
|
|
return self.get_steer_feedforward_volt
|
|
else:
|
|
return CarInterfaceBase.get_steer_feedforward_default
|
|
|
|
def torque_from_lateral_accel_siglin(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
|
|
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
|
|
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
|
|
|
|
def sig(val):
|
|
return 1 / (1 + exp(-val)) - 0.5
|
|
|
|
# The "lat_accel vs torque" relationship is assumed to be the sum of "sigmoid + linear" curves
|
|
# An important thing to consider is that the slope at 0 should be > 0 (ideally >1)
|
|
# This has big effect on the stability about 0 (noise when going straight)
|
|
# ToDo: To generalize to other GMs, explore tanh function as the nonlinear
|
|
non_linear_torque_params = NON_LINEAR_TORQUE_PARAMS.get(self.CP.carFingerprint)
|
|
assert non_linear_torque_params, "The params are not defined"
|
|
a, b, c, _ = non_linear_torque_params
|
|
steer_torque = (sig(latcontrol_inputs.lateral_acceleration * a) * b) + (latcontrol_inputs.lateral_acceleration * c)
|
|
return float(steer_torque) + friction
|
|
|
|
def torque_from_lateral_accel_neural(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning, lateral_accel_error: float,
|
|
lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
|
|
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
|
|
inputs = list(latcontrol_inputs)
|
|
if gravity_adjusted:
|
|
inputs[0] += inputs[1]
|
|
return float(self.neural_ff_model.predict(inputs)) + friction
|
|
|
|
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
|
|
if self.CP.carFingerprint == CAR.BOLT_EUV:
|
|
self.neural_ff_model = NanoFFModel(NEURAL_PARAMS_PATH, self.CP.carFingerprint)
|
|
return self.torque_from_lateral_accel_neural
|
|
elif self.CP.carFingerprint in NON_LINEAR_TORQUE_PARAMS:
|
|
return self.torque_from_lateral_accel_siglin
|
|
else:
|
|
return self.torque_from_lateral_accel_linear
|
|
|
|
@staticmethod
|
|
def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs):
|
|
ret.carName = "gm"
|
|
ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.gm)]
|
|
ret.autoResumeSng = False
|
|
ret.enableBsm = 0x142 in fingerprint[CanBus.POWERTRAIN]
|
|
|
|
if candidate in EV_CAR:
|
|
ret.transmissionType = TransmissionType.direct
|
|
else:
|
|
ret.transmissionType = TransmissionType.automatic
|
|
|
|
ret.longitudinalTuning.deadzoneBP = [0.]
|
|
ret.longitudinalTuning.deadzoneV = [0.15]
|
|
|
|
ret.longitudinalTuning.kpBP = [5., 35.]
|
|
ret.longitudinalTuning.kiBP = [0.]
|
|
|
|
if candidate in CAMERA_ACC_CAR:
|
|
ret.experimentalLongitudinalAvailable = True
|
|
ret.networkLocation = NetworkLocation.fwdCamera
|
|
ret.radarUnavailable = True # no radar
|
|
ret.pcmCruise = True
|
|
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM
|
|
ret.minEnableSpeed = 5 * CV.KPH_TO_MS
|
|
ret.minSteerSpeed = 10 * CV.KPH_TO_MS
|
|
|
|
# Tuning for experimental long
|
|
ret.longitudinalTuning.kpV = [2.0, 1.5]
|
|
ret.longitudinalTuning.kiV = [0.72]
|
|
ret.stoppingDecelRate = 2.0 # reach brake quickly after enabling
|
|
ret.vEgoStopping = 0.25
|
|
ret.vEgoStarting = 0.25
|
|
|
|
if experimental_long:
|
|
ret.pcmCruise = False
|
|
ret.openpilotLongitudinalControl = True
|
|
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_GM_HW_CAM_LONG
|
|
|
|
else: # ASCM, OBD-II harness
|
|
ret.openpilotLongitudinalControl = True
|
|
ret.networkLocation = NetworkLocation.gateway
|
|
ret.radarUnavailable = RADAR_HEADER_MSG not in fingerprint[CanBus.OBSTACLE] and not docs
|
|
ret.pcmCruise = False # stock non-adaptive cruise control is kept off
|
|
# supports stop and go, but initial engage must (conservatively) be above 18mph
|
|
ret.minEnableSpeed = 18 * CV.MPH_TO_MS
|
|
ret.minSteerSpeed = 7 * CV.MPH_TO_MS
|
|
|
|
# Tuning
|
|
ret.longitudinalTuning.kpV = [2.4, 1.5]
|
|
ret.longitudinalTuning.kiV = [0.36]
|
|
|
|
# These cars have been put into dashcam only due to both a lack of users and test coverage.
|
|
# These cars likely still work fine. Once a user confirms each car works and a test route is
|
|
# added to selfdrive/car/tests/routes.py, we can remove it from this list.
|
|
ret.dashcamOnly = candidate in {CAR.CADILLAC_ATS, CAR.HOLDEN_ASTRA, CAR.MALIBU, CAR.BUICK_REGAL} or \
|
|
(ret.networkLocation == NetworkLocation.gateway and ret.radarUnavailable)
|
|
|
|
# Start with a baseline tuning for all GM vehicles. Override tuning as needed in each model section below.
|
|
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]]
|
|
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.00]]
|
|
ret.lateralTuning.pid.kf = 0.00004 # full torque for 20 deg at 80mph means 0.00007818594
|
|
ret.steerActuatorDelay = 0.1 # Default delay, not measured yet
|
|
|
|
ret.steerLimitTimer = 0.4
|
|
ret.radarTimeStep = 0.0667 # GM radar runs at 15Hz instead of standard 20Hz
|
|
ret.longitudinalActuatorDelayUpperBound = 0.5 # large delay to initially start braking
|
|
|
|
if candidate == CAR.VOLT:
|
|
ret.lateralTuning.pid.kpBP = [0., 40.]
|
|
ret.lateralTuning.pid.kpV = [0., 0.17]
|
|
ret.lateralTuning.pid.kiBP = [0.]
|
|
ret.lateralTuning.pid.kiV = [0.]
|
|
ret.lateralTuning.pid.kf = 1. # get_steer_feedforward_volt()
|
|
ret.steerActuatorDelay = 0.2
|
|
|
|
elif candidate == CAR.ACADIA:
|
|
ret.minEnableSpeed = -1. # engage speed is decided by pcm
|
|
ret.steerActuatorDelay = 0.2
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.BUICK_LACROSSE:
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.ESCALADE:
|
|
ret.minEnableSpeed = -1. # engage speed is decided by pcm
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate in (CAR.ESCALADE_ESV, CAR.ESCALADE_ESV_2019):
|
|
ret.minEnableSpeed = -1. # engage speed is decided by pcm
|
|
|
|
if candidate == CAR.ESCALADE_ESV:
|
|
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[10., 41.0], [10., 41.0]]
|
|
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.13, 0.24], [0.01, 0.02]]
|
|
ret.lateralTuning.pid.kf = 0.000045
|
|
else:
|
|
ret.steerActuatorDelay = 0.2
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.BOLT_EUV:
|
|
ret.steerActuatorDelay = 0.2
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.SILVERADO:
|
|
# On the Bolt, the ECM and camera independently check that you are either above 5 kph or at a stop
|
|
# with foot on brake to allow engagement, but this platform only has that check in the camera.
|
|
# TODO: check if this is split by EV/ICE with more platforms in the future
|
|
if ret.openpilotLongitudinalControl:
|
|
ret.minEnableSpeed = -1.
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.EQUINOX:
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
elif candidate == CAR.TRAILBLAZER:
|
|
ret.steerActuatorDelay = 0.2
|
|
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
|
|
|
|
return ret
|
|
|
|
# returns a car.CarState
|
|
def _update(self, c):
|
|
ret = self.CS.update(self.cp, self.cp_cam, self.cp_loopback)
|
|
|
|
# Don't add event if transitioning from INIT, unless it's to an actual button
|
|
if self.CS.cruise_buttons != CruiseButtons.UNPRESS or self.CS.prev_cruise_buttons != CruiseButtons.INIT:
|
|
ret.buttonEvents = [
|
|
*create_button_events(self.CS.cruise_buttons, self.CS.prev_cruise_buttons, BUTTONS_DICT,
|
|
unpressed_btn=CruiseButtons.UNPRESS),
|
|
*create_button_events(self.CS.distance_button, self.CS.prev_distance_button,
|
|
{1: ButtonType.gapAdjustCruise})
|
|
]
|
|
|
|
# The ECM allows enabling on falling edge of set, but only rising edge of resume
|
|
events = self.create_common_events(ret, extra_gears=[GearShifter.sport, GearShifter.low,
|
|
GearShifter.eco, GearShifter.manumatic],
|
|
pcm_enable=self.CP.pcmCruise, enable_buttons=(ButtonType.decelCruise,))
|
|
if not self.CP.pcmCruise:
|
|
if any(b.type == ButtonType.accelCruise and b.pressed for b in ret.buttonEvents):
|
|
events.add(EventName.buttonEnable)
|
|
|
|
# Enabling at a standstill with brake is allowed
|
|
# TODO: verify 17 Volt can enable for the first time at a stop and allow for all GMs
|
|
below_min_enable_speed = ret.vEgo < self.CP.minEnableSpeed or self.CS.moving_backward
|
|
if below_min_enable_speed and not (ret.standstill and ret.brake >= 20 and
|
|
self.CP.networkLocation == NetworkLocation.fwdCamera):
|
|
events.add(EventName.belowEngageSpeed)
|
|
if ret.cruiseState.standstill:
|
|
events.add(EventName.resumeRequired)
|
|
if ret.vEgo < self.CP.minSteerSpeed:
|
|
events.add(EventName.belowSteerSpeed)
|
|
|
|
ret.events = events.to_msg()
|
|
|
|
return ret
|
|
|
|
def apply(self, c, now_nanos):
|
|
return self.CC.update(c, self.CS, now_nanos)
|
|
|