You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
11 KiB
258 lines
11 KiB
import os
|
|
import math
|
|
import numpy as np
|
|
from common.params import Params
|
|
from common.realtime import sec_since_boot, DT_MDL
|
|
from common.numpy_fast import interp, clip
|
|
from selfdrive.swaglog import cloudlog
|
|
from selfdrive.controls.lib.lateral_mpc import libmpc_py
|
|
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT, MPC_N, CAR_ROTATION_RADIUS
|
|
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
|
|
from selfdrive.config import Conversions as CV
|
|
import cereal.messaging as messaging
|
|
from cereal import log
|
|
|
|
LaneChangeState = log.LateralPlan.LaneChangeState
|
|
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
|
|
|
|
LOG_MPC = os.environ.get('LOG_MPC', False)
|
|
|
|
LANE_CHANGE_SPEED_MIN = 30 * CV.MPH_TO_MS
|
|
LANE_CHANGE_TIME_MAX = 10.
|
|
# this corresponds to 80deg/s and 20deg/s steering angle in a toyota corolla
|
|
MAX_CURVATURE_RATES = [0.03762194918267951, 0.003441203371932992]
|
|
MAX_CURVATURE_RATE_SPEEDS = [0, 35]
|
|
|
|
DESIRES = {
|
|
LaneChangeDirection.none: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.none,
|
|
},
|
|
LaneChangeDirection.left: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeLeft,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeLeft,
|
|
},
|
|
LaneChangeDirection.right: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeRight,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeRight,
|
|
},
|
|
}
|
|
|
|
|
|
class LateralPlanner():
|
|
def __init__(self, CP):
|
|
self.LP = LanePlanner()
|
|
|
|
self.last_cloudlog_t = 0
|
|
self.steer_rate_cost = CP.steerRateCost
|
|
|
|
self.setup_mpc()
|
|
self.solution_invalid_cnt = 0
|
|
self.use_lanelines = not Params().get_bool('EndToEndToggle')
|
|
self.lane_change_state = LaneChangeState.off
|
|
self.lane_change_direction = LaneChangeDirection.none
|
|
self.lane_change_timer = 0.0
|
|
self.lane_change_ll_prob = 1.0
|
|
self.prev_one_blinker = False
|
|
self.desire = log.LateralPlan.Desire.none
|
|
|
|
self.path_xyz = np.zeros((TRAJECTORY_SIZE,3))
|
|
self.path_xyz_stds = np.ones((TRAJECTORY_SIZE,3))
|
|
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
|
|
self.t_idxs = np.arange(TRAJECTORY_SIZE)
|
|
self.y_pts = np.zeros(TRAJECTORY_SIZE)
|
|
|
|
def setup_mpc(self):
|
|
self.libmpc = libmpc_py.libmpc
|
|
self.libmpc.init()
|
|
|
|
self.mpc_solution = libmpc_py.ffi.new("log_t *")
|
|
self.cur_state = libmpc_py.ffi.new("state_t *")
|
|
self.cur_state[0].x = 0.0
|
|
self.cur_state[0].y = 0.0
|
|
self.cur_state[0].psi = 0.0
|
|
self.cur_state[0].curvature = 0.0
|
|
|
|
self.desired_curvature = 0.0
|
|
self.safe_desired_curvature = 0.0
|
|
self.desired_curvature_rate = 0.0
|
|
self.safe_desired_curvature_rate = 0.0
|
|
|
|
def update(self, sm, CP):
|
|
v_ego = sm['carState'].vEgo
|
|
active = sm['controlsState'].active
|
|
measured_curvature = sm['controlsState'].curvature
|
|
|
|
md = sm['modelV2']
|
|
self.LP.parse_model(sm['modelV2'])
|
|
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
|
|
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
|
self.t_idxs = np.array(md.position.t)
|
|
self.plan_yaw = list(md.orientation.z)
|
|
if len(md.orientation.xStd) == TRAJECTORY_SIZE:
|
|
self.path_xyz_stds = np.column_stack([md.position.xStd, md.position.yStd, md.position.zStd])
|
|
|
|
# Lane change logic
|
|
one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
|
|
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
|
|
|
|
if sm['carState'].leftBlinker:
|
|
self.lane_change_direction = LaneChangeDirection.left
|
|
elif sm['carState'].rightBlinker:
|
|
self.lane_change_direction = LaneChangeDirection.right
|
|
|
|
if (not active) or (self.lane_change_timer > LANE_CHANGE_TIME_MAX):
|
|
self.lane_change_state = LaneChangeState.off
|
|
self.lane_change_direction = LaneChangeDirection.none
|
|
else:
|
|
torque_applied = sm['carState'].steeringPressed and \
|
|
((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
|
|
(sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))
|
|
|
|
blindspot_detected = ((sm['carState'].leftBlindspot and self.lane_change_direction == LaneChangeDirection.left) or
|
|
(sm['carState'].rightBlindspot and self.lane_change_direction == LaneChangeDirection.right))
|
|
|
|
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
|
|
|
|
# State transitions
|
|
# off
|
|
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
|
|
self.lane_change_state = LaneChangeState.preLaneChange
|
|
self.lane_change_ll_prob = 1.0
|
|
|
|
# pre
|
|
elif self.lane_change_state == LaneChangeState.preLaneChange:
|
|
if not one_blinker or below_lane_change_speed:
|
|
self.lane_change_state = LaneChangeState.off
|
|
elif torque_applied and not blindspot_detected:
|
|
self.lane_change_state = LaneChangeState.laneChangeStarting
|
|
|
|
# starting
|
|
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
|
|
# fade out over .5s
|
|
self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2*DT_MDL, 0.0)
|
|
# 98% certainty
|
|
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
|
|
self.lane_change_state = LaneChangeState.laneChangeFinishing
|
|
|
|
# finishing
|
|
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
|
|
# fade in laneline over 1s
|
|
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
|
|
if one_blinker and self.lane_change_ll_prob > 0.99:
|
|
self.lane_change_state = LaneChangeState.preLaneChange
|
|
elif self.lane_change_ll_prob > 0.99:
|
|
self.lane_change_state = LaneChangeState.off
|
|
|
|
if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]:
|
|
self.lane_change_timer = 0.0
|
|
else:
|
|
self.lane_change_timer += DT_MDL
|
|
|
|
self.prev_one_blinker = one_blinker
|
|
|
|
self.desire = DESIRES[self.lane_change_direction][self.lane_change_state]
|
|
|
|
# Turn off lanes during lane change
|
|
if self.desire == log.LateralPlan.Desire.laneChangeRight or self.desire == log.LateralPlan.Desire.laneChangeLeft:
|
|
self.LP.lll_prob *= self.lane_change_ll_prob
|
|
self.LP.rll_prob *= self.lane_change_ll_prob
|
|
if self.use_lanelines:
|
|
std_cost_mult = np.clip(abs(self.path_xyz[0,1]/self.path_xyz_stds[0,1]), 0.5, 5.0)
|
|
d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
|
|
else:
|
|
std_cost_mult = 1.0
|
|
d_path_xyz = self.path_xyz
|
|
y_pts = np.interp(v_ego * self.t_idxs[:MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:,1])
|
|
heading_pts = np.interp(v_ego * self.t_idxs[:MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
|
|
self.y_pts = y_pts
|
|
|
|
assert len(y_pts) == MPC_N + 1
|
|
assert len(heading_pts) == MPC_N + 1
|
|
self.libmpc.set_weights(std_cost_mult*MPC_COST_LAT.PATH, 0.0, CP.steerRateCost)
|
|
self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
|
|
float(v_ego),
|
|
CAR_ROTATION_RADIUS,
|
|
list(y_pts),
|
|
list(heading_pts))
|
|
# init state for next
|
|
self.cur_state.x = 0.0
|
|
self.cur_state.y = 0.0
|
|
self.cur_state.psi = 0.0
|
|
self.cur_state.curvature = interp(DT_MDL, self.t_idxs[:MPC_N + 1], self.mpc_solution.curvature)
|
|
|
|
# TODO this needs more thought, use .2s extra for now to estimate other delays
|
|
delay = CP.steerActuatorDelay + .2
|
|
current_curvature = self.mpc_solution.curvature[0]
|
|
psi = interp(delay, self.t_idxs[:MPC_N + 1], self.mpc_solution.psi)
|
|
next_curvature_rate = self.mpc_solution.curvature_rate[0]
|
|
|
|
# MPC can plan to turn the wheel and turn back before t_delay. This means
|
|
# in high delay cases some corrections never even get commanded. So just use
|
|
# psi to calculate a simple linearization of desired curvature
|
|
curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature
|
|
next_curvature = current_curvature + 2 * curvature_diff_from_psi
|
|
|
|
self.desired_curvature = next_curvature
|
|
self.desired_curvature_rate = next_curvature_rate
|
|
max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES)
|
|
self.safe_desired_curvature_rate = clip(self.desired_curvature_rate,
|
|
-max_curvature_rate,
|
|
max_curvature_rate)
|
|
self.safe_desired_curvature = clip(self.desired_curvature,
|
|
self.safe_desired_curvature - max_curvature_rate/DT_MDL,
|
|
self.safe_desired_curvature + max_curvature_rate/DT_MDL)
|
|
|
|
# Check for infeasable MPC solution
|
|
mpc_nans = any(math.isnan(x) for x in self.mpc_solution.curvature)
|
|
t = sec_since_boot()
|
|
if mpc_nans:
|
|
self.libmpc.init()
|
|
self.cur_state.curvature = measured_curvature
|
|
|
|
if t > self.last_cloudlog_t + 5.0:
|
|
self.last_cloudlog_t = t
|
|
cloudlog.warning("Lateral mpc - nan: True")
|
|
|
|
if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge
|
|
self.solution_invalid_cnt += 1
|
|
else:
|
|
self.solution_invalid_cnt = 0
|
|
|
|
def publish(self, sm, pm):
|
|
plan_solution_valid = self.solution_invalid_cnt < 2
|
|
plan_send = messaging.new_message('lateralPlan')
|
|
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'modelV2'])
|
|
plan_send.lateralPlan.laneWidth = float(self.LP.lane_width)
|
|
plan_send.lateralPlan.dPathPoints = [float(x) for x in self.y_pts]
|
|
plan_send.lateralPlan.lProb = float(self.LP.lll_prob)
|
|
plan_send.lateralPlan.rProb = float(self.LP.rll_prob)
|
|
plan_send.lateralPlan.dProb = float(self.LP.d_prob)
|
|
|
|
plan_send.lateralPlan.rawCurvature = float(self.desired_curvature)
|
|
plan_send.lateralPlan.rawCurvatureRate = float(self.desired_curvature_rate)
|
|
plan_send.lateralPlan.curvature = float(self.safe_desired_curvature)
|
|
plan_send.lateralPlan.curvatureRate = float(self.safe_desired_curvature_rate)
|
|
|
|
plan_send.lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
|
|
|
|
plan_send.lateralPlan.desire = self.desire
|
|
plan_send.lateralPlan.laneChangeState = self.lane_change_state
|
|
plan_send.lateralPlan.laneChangeDirection = self.lane_change_direction
|
|
|
|
pm.send('lateralPlan', plan_send)
|
|
|
|
if LOG_MPC:
|
|
dat = messaging.new_message('liveMpc')
|
|
dat.liveMpc.x = list(self.mpc_solution.x)
|
|
dat.liveMpc.y = list(self.mpc_solution.y)
|
|
dat.liveMpc.psi = list(self.mpc_solution.psi)
|
|
dat.liveMpc.curvature = list(self.mpc_solution.curvature)
|
|
dat.liveMpc.cost = self.mpc_solution.cost
|
|
pm.send('liveMpc', dat)
|
|
|