You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
5.3 KiB
195 lines
5.3 KiB
#!/usr/bin/env python3
|
|
import sys
|
|
|
|
import math
|
|
import numpy as np
|
|
import sympy as sp
|
|
|
|
from selfdrive.locationd.models.constants import ObservationKind
|
|
from rednose.helpers.ekf_sym import EKF_sym, gen_code
|
|
|
|
i = 0
|
|
|
|
|
|
def _slice(n):
|
|
global i
|
|
s = slice(i, i + n)
|
|
i += n
|
|
|
|
return s
|
|
|
|
|
|
class States():
|
|
# Vehicle model params
|
|
STIFFNESS = _slice(1) # [-]
|
|
STEER_RATIO = _slice(1) # [-]
|
|
ANGLE_OFFSET = _slice(1) # [rad]
|
|
ANGLE_OFFSET_FAST = _slice(1) # [rad]
|
|
|
|
VELOCITY = _slice(2) # (x, y) [m/s]
|
|
YAW_RATE = _slice(1) # [rad/s]
|
|
STEER_ANGLE = _slice(1) # [rad]
|
|
|
|
|
|
class CarKalman():
|
|
name = 'car'
|
|
|
|
x_initial = np.array([
|
|
1.0,
|
|
15.0,
|
|
0.0,
|
|
0.0,
|
|
|
|
10.0, 0.0,
|
|
0.0,
|
|
0.0,
|
|
])
|
|
|
|
# process noise
|
|
Q = np.diag([
|
|
(.05/100)**2,
|
|
.01**2,
|
|
math.radians(0.002)**2,
|
|
math.radians(0.1)**2,
|
|
|
|
.1**2, .01**2,
|
|
math.radians(0.1)**2,
|
|
math.radians(0.1)**2,
|
|
])
|
|
P_initial = Q.copy()
|
|
|
|
obs_noise = {
|
|
ObservationKind.STEER_ANGLE: np.atleast_2d(math.radians(0.01)**2),
|
|
ObservationKind.ANGLE_OFFSET_FAST: np.atleast_2d(math.radians(5.0)**2),
|
|
ObservationKind.STEER_RATIO: np.atleast_2d(5.0**2),
|
|
ObservationKind.STIFFNESS: np.atleast_2d(5.0**2),
|
|
ObservationKind.ROAD_FRAME_X_SPEED: np.atleast_2d(0.1**2),
|
|
}
|
|
|
|
maha_test_kinds = [] # [ObservationKind.ROAD_FRAME_YAW_RATE, ObservationKind.ROAD_FRAME_XY_SPEED]
|
|
global_vars = [
|
|
sp.Symbol('mass'),
|
|
sp.Symbol('rotational_inertia'),
|
|
sp.Symbol('center_to_front'),
|
|
sp.Symbol('center_to_rear'),
|
|
sp.Symbol('stiffness_front'),
|
|
sp.Symbol('stiffness_rear'),
|
|
]
|
|
|
|
@staticmethod
|
|
def generate_code(generated_dir):
|
|
dim_state = CarKalman.x_initial.shape[0]
|
|
name = CarKalman.name
|
|
maha_test_kinds = CarKalman.maha_test_kinds
|
|
|
|
# globals
|
|
m, j, aF, aR, cF_orig, cR_orig = CarKalman.global_vars
|
|
|
|
# make functions and jacobians with sympy
|
|
# state variables
|
|
state_sym = sp.MatrixSymbol('state', dim_state, 1)
|
|
state = sp.Matrix(state_sym)
|
|
|
|
# Vehicle model constants
|
|
x = state[States.STIFFNESS, :][0, 0]
|
|
|
|
cF, cR = x * cF_orig, x * cR_orig
|
|
angle_offset = state[States.ANGLE_OFFSET, :][0, 0]
|
|
angle_offset_fast = state[States.ANGLE_OFFSET_FAST, :][0, 0]
|
|
sa = state[States.STEER_ANGLE, :][0, 0]
|
|
|
|
sR = state[States.STEER_RATIO, :][0, 0]
|
|
u, v = state[States.VELOCITY, :]
|
|
r = state[States.YAW_RATE, :][0, 0]
|
|
|
|
A = sp.Matrix(np.zeros((2, 2)))
|
|
A[0, 0] = -(cF + cR) / (m * u)
|
|
A[0, 1] = -(cF * aF - cR * aR) / (m * u) - u
|
|
A[1, 0] = -(cF * aF - cR * aR) / (j * u)
|
|
A[1, 1] = -(cF * aF**2 + cR * aR**2) / (j * u)
|
|
|
|
B = sp.Matrix(np.zeros((2, 1)))
|
|
B[0, 0] = cF / m / sR
|
|
B[1, 0] = (cF * aF) / j / sR
|
|
|
|
x = sp.Matrix([v, r]) # lateral velocity, yaw rate
|
|
x_dot = A * x + B * (sa - angle_offset - angle_offset_fast)
|
|
|
|
dt = sp.Symbol('dt')
|
|
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
|
|
state_dot[States.VELOCITY.start + 1, 0] = x_dot[0]
|
|
state_dot[States.YAW_RATE.start, 0] = x_dot[1]
|
|
|
|
# Basic descretization, 1st order integrator
|
|
# Can be pretty bad if dt is big
|
|
f_sym = state + dt * state_dot
|
|
|
|
#
|
|
# Observation functions
|
|
#
|
|
obs_eqs = [
|
|
[sp.Matrix([r]), ObservationKind.ROAD_FRAME_YAW_RATE, None],
|
|
[sp.Matrix([u, v]), ObservationKind.ROAD_FRAME_XY_SPEED, None],
|
|
[sp.Matrix([u]), ObservationKind.ROAD_FRAME_X_SPEED, None],
|
|
[sp.Matrix([sa]), ObservationKind.STEER_ANGLE, None],
|
|
[sp.Matrix([angle_offset_fast]), ObservationKind.ANGLE_OFFSET_FAST, None],
|
|
[sp.Matrix([sR]), ObservationKind.STEER_RATIO, None],
|
|
[sp.Matrix([x]), ObservationKind.STIFFNESS, None],
|
|
]
|
|
|
|
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, maha_test_kinds=maha_test_kinds, global_vars=CarKalman.global_vars)
|
|
|
|
def __init__(self, generated_dir, steer_ratio=15, stiffness_factor=1, angle_offset=0):
|
|
self.dim_state = self.x_initial.shape[0]
|
|
x_init = self.x_initial
|
|
x_init[States.STEER_RATIO] = steer_ratio
|
|
x_init[States.STIFFNESS] = stiffness_factor
|
|
x_init[States.ANGLE_OFFSET] = angle_offset
|
|
|
|
# init filter
|
|
self.filter = EKF_sym(generated_dir, self.name, self.Q, self.x_initial, self.P_initial, self.dim_state, self.dim_state, maha_test_kinds=self.maha_test_kinds, global_vars=self.global_vars)
|
|
|
|
@property
|
|
def x(self):
|
|
return self.filter.state()
|
|
|
|
@property
|
|
def P(self):
|
|
return self.filter.covs()
|
|
|
|
def predict(self, t):
|
|
return self.filter.predict(t)
|
|
|
|
def rts_smooth(self, estimates):
|
|
return self.filter.rts_smooth(estimates, norm_quats=False)
|
|
|
|
def get_R(self, kind, n):
|
|
obs_noise = self.obs_noise[kind]
|
|
dim = obs_noise.shape[0]
|
|
R = np.zeros((n, dim, dim))
|
|
for i in range(n):
|
|
R[i, :, :] = obs_noise
|
|
return R
|
|
|
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
|
|
if covs_diag is not None:
|
|
P = np.diag(covs_diag)
|
|
elif covs is not None:
|
|
P = covs
|
|
else:
|
|
P = self.filter.covs()
|
|
self.filter.init_state(state, P, filter_time)
|
|
|
|
def predict_and_observe(self, t, kind, data, R=None):
|
|
if len(data) > 0:
|
|
data = np.atleast_2d(data)
|
|
|
|
if R is None:
|
|
R = self.get_R(kind, len(data))
|
|
|
|
self.filter.predict_and_update_batch(t, kind, data, R)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
generated_dir = sys.argv[2]
|
|
CarKalman.generate_code(generated_dir)
|
|
|