You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							124 lines
						
					
					
						
							5.1 KiB
						
					
					
				
			
		
		
	
	
							124 lines
						
					
					
						
							5.1 KiB
						
					
					
				| import numpy as np
 | |
| from common.realtime import sec_since_boot, DT_MDL
 | |
| from common.numpy_fast import interp
 | |
| from selfdrive.swaglog import cloudlog
 | |
| from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
 | |
| from selfdrive.controls.lib.drive_helpers import CONTROL_N, MPC_COST_LAT, LAT_MPC_N, CAR_ROTATION_RADIUS
 | |
| from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
 | |
| from selfdrive.controls.lib.desire_helper import DesireHelper
 | |
| import cereal.messaging as messaging
 | |
| from cereal import log
 | |
| 
 | |
| 
 | |
| class LateralPlanner:
 | |
|   def __init__(self, CP, use_lanelines=True, wide_camera=False):
 | |
|     self.use_lanelines = use_lanelines
 | |
|     self.LP = LanePlanner(wide_camera)
 | |
|     self.DH = DesireHelper()
 | |
| 
 | |
|     self.last_cloudlog_t = 0
 | |
|     self.steer_rate_cost = CP.steerRateCost
 | |
|     self.solution_invalid_cnt = 0
 | |
| 
 | |
|     self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
 | |
|     self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
 | |
|     self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
 | |
|     self.t_idxs = np.arange(TRAJECTORY_SIZE)
 | |
|     self.y_pts = np.zeros(TRAJECTORY_SIZE)
 | |
| 
 | |
|     self.lat_mpc = LateralMpc()
 | |
|     self.reset_mpc(np.zeros(4))
 | |
| 
 | |
|   def reset_mpc(self, x0=np.zeros(4)):
 | |
|     self.x0 = x0
 | |
|     self.lat_mpc.reset(x0=self.x0)
 | |
| 
 | |
|   def update(self, sm):
 | |
|     v_ego = sm['carState'].vEgo
 | |
|     measured_curvature = sm['controlsState'].curvature
 | |
| 
 | |
|     # Parse model predictions
 | |
|     md = sm['modelV2']
 | |
|     self.LP.parse_model(md)
 | |
|     if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
 | |
|       self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
 | |
|       self.t_idxs = np.array(md.position.t)
 | |
|       self.plan_yaw = list(md.orientation.z)
 | |
|     if len(md.position.xStd) == TRAJECTORY_SIZE:
 | |
|       self.path_xyz_stds = np.column_stack([md.position.xStd, md.position.yStd, md.position.zStd])
 | |
| 
 | |
|     # Lane change logic
 | |
|     lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
 | |
|     self.DH.update(sm['carState'], sm['controlsState'].active, lane_change_prob)
 | |
| 
 | |
|     # Turn off lanes during lane change
 | |
|     if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
 | |
|       self.LP.lll_prob *= self.DH.lane_change_ll_prob
 | |
|       self.LP.rll_prob *= self.DH.lane_change_ll_prob
 | |
| 
 | |
|     # Calculate final driving path and set MPC costs
 | |
|     if self.use_lanelines:
 | |
|       d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
 | |
|       self.lat_mpc.set_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, self.steer_rate_cost)
 | |
|     else:
 | |
|       d_path_xyz = self.path_xyz
 | |
|       path_cost = np.clip(abs(self.path_xyz[0, 1] / self.path_xyz_stds[0, 1]), 0.5, 1.5) * MPC_COST_LAT.PATH
 | |
|       # Heading cost is useful at low speed, otherwise end of plan can be off-heading
 | |
|       heading_cost = interp(v_ego, [5.0, 10.0], [MPC_COST_LAT.HEADING, 0.0])
 | |
|       self.lat_mpc.set_weights(path_cost, heading_cost, self.steer_rate_cost)
 | |
| 
 | |
|     y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1])
 | |
|     heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
 | |
|     self.y_pts = y_pts
 | |
| 
 | |
|     assert len(y_pts) == LAT_MPC_N + 1
 | |
|     assert len(heading_pts) == LAT_MPC_N + 1
 | |
|     # self.x0[4] = v_ego
 | |
|     p = np.array([v_ego, CAR_ROTATION_RADIUS])
 | |
|     self.lat_mpc.run(self.x0,
 | |
|                      p,
 | |
|                      y_pts,
 | |
|                      heading_pts)
 | |
|     # init state for next
 | |
|     self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
 | |
| 
 | |
|     #  Check for infeasible MPC solution
 | |
|     mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
 | |
|     t = sec_since_boot()
 | |
|     if mpc_nans or self.lat_mpc.solution_status != 0:
 | |
|       self.reset_mpc()
 | |
|       self.x0[3] = measured_curvature
 | |
|       if t > self.last_cloudlog_t + 5.0:
 | |
|         self.last_cloudlog_t = t
 | |
|         cloudlog.warning("Lateral mpc - nan: True")
 | |
| 
 | |
|     if self.lat_mpc.cost > 20000. or mpc_nans:
 | |
|       self.solution_invalid_cnt += 1
 | |
|     else:
 | |
|       self.solution_invalid_cnt = 0
 | |
| 
 | |
|   def publish(self, sm, pm):
 | |
|     plan_solution_valid = self.solution_invalid_cnt < 2
 | |
|     plan_send = messaging.new_message('lateralPlan')
 | |
|     plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
 | |
| 
 | |
|     lateralPlan = plan_send.lateralPlan
 | |
|     lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
 | |
|     lateralPlan.laneWidth = float(self.LP.lane_width)
 | |
|     lateralPlan.dPathPoints = self.y_pts.tolist()
 | |
|     lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
 | |
|     lateralPlan.curvatures = self.lat_mpc.x_sol[0:CONTROL_N, 3].tolist()
 | |
|     lateralPlan.curvatureRates = [float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
 | |
|     lateralPlan.lProb = float(self.LP.lll_prob)
 | |
|     lateralPlan.rProb = float(self.LP.rll_prob)
 | |
|     lateralPlan.dProb = float(self.LP.d_prob)
 | |
| 
 | |
|     lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
 | |
|     lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
 | |
| 
 | |
|     lateralPlan.desire = self.DH.desire
 | |
|     lateralPlan.useLaneLines = self.use_lanelines
 | |
|     lateralPlan.laneChangeState = self.DH.lane_change_state
 | |
|     lateralPlan.laneChangeDirection = self.DH.lane_change_direction
 | |
| 
 | |
|     pm.send('lateralPlan', plan_send)
 | |
| 
 |