You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
11 KiB
256 lines
11 KiB
import os
|
|
import math
|
|
import numpy as np
|
|
from common.realtime import sec_since_boot, DT_MDL
|
|
from common.numpy_fast import interp
|
|
from selfdrive.swaglog import cloudlog
|
|
from selfdrive.controls.lib.lateral_mpc import libmpc_py
|
|
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT, MPC_N, CAR_ROTATION_RADIUS
|
|
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
|
|
from selfdrive.config import Conversions as CV
|
|
from common.params import Params
|
|
import cereal.messaging as messaging
|
|
from cereal import log
|
|
|
|
LaneChangeState = log.LateralPlan.LaneChangeState
|
|
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
|
|
|
|
LOG_MPC = os.environ.get('LOG_MPC', False)
|
|
|
|
LANE_CHANGE_SPEED_MIN = 45 * CV.MPH_TO_MS
|
|
LANE_CHANGE_TIME_MAX = 10.
|
|
|
|
DESIRES = {
|
|
LaneChangeDirection.none: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.none,
|
|
},
|
|
LaneChangeDirection.left: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeLeft,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeLeft,
|
|
},
|
|
LaneChangeDirection.right: {
|
|
LaneChangeState.off: log.LateralPlan.Desire.none,
|
|
LaneChangeState.preLaneChange: log.LateralPlan.Desire.none,
|
|
LaneChangeState.laneChangeStarting: log.LateralPlan.Desire.laneChangeRight,
|
|
LaneChangeState.laneChangeFinishing: log.LateralPlan.Desire.laneChangeRight,
|
|
},
|
|
}
|
|
|
|
|
|
class LateralPlanner():
|
|
def __init__(self, CP):
|
|
self.LP = LanePlanner()
|
|
|
|
self.last_cloudlog_t = 0
|
|
self.steer_rate_cost = CP.steerRateCost
|
|
|
|
self.setup_mpc()
|
|
self.solution_invalid_cnt = 0
|
|
self.lane_change_enabled = Params().get('LaneChangeEnabled') == b'1'
|
|
self.lane_change_state = LaneChangeState.off
|
|
self.lane_change_direction = LaneChangeDirection.none
|
|
self.lane_change_timer = 0.0
|
|
self.lane_change_ll_prob = 1.0
|
|
self.prev_one_blinker = False
|
|
self.desire = log.LateralPlan.Desire.none
|
|
|
|
self.path_xyz = np.zeros((TRAJECTORY_SIZE,3))
|
|
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
|
|
self.t_idxs = np.arange(TRAJECTORY_SIZE)
|
|
self.y_pts = np.zeros(TRAJECTORY_SIZE)
|
|
|
|
def setup_mpc(self):
|
|
self.libmpc = libmpc_py.libmpc
|
|
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, self.steer_rate_cost)
|
|
|
|
self.mpc_solution = libmpc_py.ffi.new("log_t *")
|
|
self.cur_state = libmpc_py.ffi.new("state_t *")
|
|
self.cur_state[0].x = 0.0
|
|
self.cur_state[0].y = 0.0
|
|
self.cur_state[0].psi = 0.0
|
|
self.cur_state[0].curvature = 0.0
|
|
|
|
self.angle_steers_des = 0.0
|
|
self.angle_steers_des_mpc = 0.0
|
|
self.angle_steers_des_time = 0.0
|
|
|
|
def update(self, sm, CP, VM):
|
|
v_ego = sm['carState'].vEgo
|
|
active = sm['controlsState'].active
|
|
steering_wheel_angle_offset_deg = sm['liveParameters'].angleOffset
|
|
steering_wheel_angle_deg = sm['carState'].steeringAngle
|
|
|
|
# Update vehicle model
|
|
x = max(sm['liveParameters'].stiffnessFactor, 0.1)
|
|
sr = max(sm['liveParameters'].steerRatio, 0.1)
|
|
VM.update_params(x, sr)
|
|
curvature_factor = VM.curvature_factor(v_ego)
|
|
measured_curvature = -curvature_factor * math.radians(steering_wheel_angle_deg - steering_wheel_angle_offset_deg) / VM.sR
|
|
|
|
|
|
md = sm['modelV2']
|
|
self.LP.parse_model(sm['modelV2'])
|
|
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
|
|
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
|
|
self.t_idxs = np.array(md.position.t)
|
|
self.plan_yaw = list(md.orientation.z)
|
|
|
|
# Lane change logic
|
|
one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
|
|
below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN
|
|
|
|
if sm['carState'].leftBlinker:
|
|
self.lane_change_direction = LaneChangeDirection.left
|
|
elif sm['carState'].rightBlinker:
|
|
self.lane_change_direction = LaneChangeDirection.right
|
|
|
|
if (not active) or (self.lane_change_timer > LANE_CHANGE_TIME_MAX) or (not self.lane_change_enabled):
|
|
self.lane_change_state = LaneChangeState.off
|
|
self.lane_change_direction = LaneChangeDirection.none
|
|
else:
|
|
torque_applied = sm['carState'].steeringPressed and \
|
|
((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
|
|
(sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))
|
|
|
|
blindspot_detected = ((sm['carState'].leftBlindspot and self.lane_change_direction == LaneChangeDirection.left) or
|
|
(sm['carState'].rightBlindspot and self.lane_change_direction == LaneChangeDirection.right))
|
|
|
|
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
|
|
|
|
# State transitions
|
|
# off
|
|
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
|
|
self.lane_change_state = LaneChangeState.preLaneChange
|
|
self.lane_change_ll_prob = 1.0
|
|
|
|
# pre
|
|
elif self.lane_change_state == LaneChangeState.preLaneChange:
|
|
if not one_blinker or below_lane_change_speed:
|
|
self.lane_change_state = LaneChangeState.off
|
|
elif torque_applied and not blindspot_detected:
|
|
self.lane_change_state = LaneChangeState.laneChangeStarting
|
|
|
|
# starting
|
|
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
|
|
# fade out over .5s
|
|
self.lane_change_ll_prob = max(self.lane_change_ll_prob - 2*DT_MDL, 0.0)
|
|
# 98% certainty
|
|
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
|
|
self.lane_change_state = LaneChangeState.laneChangeFinishing
|
|
|
|
# finishing
|
|
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
|
|
# fade in laneline over 1s
|
|
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
|
|
if one_blinker and self.lane_change_ll_prob > 0.99:
|
|
self.lane_change_state = LaneChangeState.preLaneChange
|
|
elif self.lane_change_ll_prob > 0.99:
|
|
self.lane_change_state = LaneChangeState.off
|
|
|
|
if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]:
|
|
self.lane_change_timer = 0.0
|
|
else:
|
|
self.lane_change_timer += DT_MDL
|
|
|
|
self.prev_one_blinker = one_blinker
|
|
|
|
self.desire = DESIRES[self.lane_change_direction][self.lane_change_state]
|
|
|
|
# Turn off lanes during lane change
|
|
if self.desire == log.LateralPlan.Desire.laneChangeRight or self.desire == log.LateralPlan.Desire.laneChangeLeft:
|
|
self.LP.lll_prob *= self.lane_change_ll_prob
|
|
self.LP.rll_prob *= self.lane_change_ll_prob
|
|
d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
|
|
y_pts = np.interp(v_ego * self.t_idxs[:MPC_N+1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:,1])
|
|
heading_pts = np.interp(v_ego * self.t_idxs[:MPC_N+1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
|
|
self.y_pts = y_pts
|
|
|
|
v_ego_mpc = max(v_ego, 5.0) # avoid mpc roughness due to low speed
|
|
assert len(y_pts) == MPC_N + 1
|
|
assert len(heading_pts) == MPC_N + 1
|
|
self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
|
|
float(v_ego_mpc),
|
|
CAR_ROTATION_RADIUS,
|
|
list(y_pts),
|
|
list(heading_pts))
|
|
# init state for next
|
|
self.cur_state.x = 0.0
|
|
self.cur_state.y = 0.0
|
|
self.cur_state.psi = 0.0
|
|
self.cur_state.curvature = interp(DT_MDL, self.t_idxs[:MPC_N+1], self.mpc_solution.curvature)
|
|
|
|
# TODO this needs more thought, use .2s extra for now to estimate other delays
|
|
delay = CP.steerActuatorDelay + .2
|
|
next_curvature = interp(DT_MDL + delay, self.t_idxs[:MPC_N+1], self.mpc_solution.curvature)
|
|
next_curvature_rate = self.mpc_solution.curvature_rate[0]
|
|
|
|
# TODO This gets around the fact that MPC can plan to turn and turn back in the
|
|
# time between now and delay, need better abstraction between planner and controls
|
|
plan_ahead_idx = sum(self.t_idxs < delay)
|
|
if next_curvature_rate > 0:
|
|
next_curvature = max(list(self.mpc_solution.curvature)[:plan_ahead_idx] + [next_curvature])
|
|
else:
|
|
next_curvature = min(list(self.mpc_solution.curvature)[:plan_ahead_idx] + [next_curvature])
|
|
|
|
# reset to current steer angle if not active or overriding
|
|
if active:
|
|
curvature_desired = next_curvature
|
|
desired_curvature_rate = next_curvature_rate
|
|
else:
|
|
curvature_desired = measured_curvature
|
|
desired_curvature_rate = 0.0
|
|
|
|
# negative sign, controls uses different convention
|
|
self.desired_steering_wheel_angle_deg = -float(math.degrees(curvature_desired * VM.sR)/curvature_factor) + steering_wheel_angle_offset_deg
|
|
self.desired_steering_wheel_angle_rate_deg = -float(math.degrees(desired_curvature_rate * VM.sR)/curvature_factor)
|
|
|
|
# Check for infeasable MPC solution
|
|
mpc_nans = any(math.isnan(x) for x in self.mpc_solution.curvature)
|
|
t = sec_since_boot()
|
|
if mpc_nans:
|
|
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, CP.steerRateCost)
|
|
self.cur_state.curvature = measured_curvature
|
|
|
|
if t > self.last_cloudlog_t + 5.0:
|
|
self.last_cloudlog_t = t
|
|
cloudlog.warning("Lateral mpc - nan: True")
|
|
|
|
if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge
|
|
self.solution_invalid_cnt += 1
|
|
else:
|
|
self.solution_invalid_cnt = 0
|
|
|
|
def publish(self, sm, pm):
|
|
plan_solution_valid = self.solution_invalid_cnt < 2
|
|
plan_send = messaging.new_message('lateralPlan')
|
|
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'liveParameters', 'modelV2'])
|
|
plan_send.lateralPlan.laneWidth = float(self.LP.lane_width)
|
|
plan_send.lateralPlan.dPathPoints = [float(x) for x in self.y_pts]
|
|
plan_send.lateralPlan.lProb = float(self.LP.lll_prob)
|
|
plan_send.lateralPlan.rProb = float(self.LP.rll_prob)
|
|
plan_send.lateralPlan.dProb = float(self.LP.d_prob)
|
|
|
|
plan_send.lateralPlan.angleSteers = float(self.desired_steering_wheel_angle_deg)
|
|
plan_send.lateralPlan.rateSteers = float(self.desired_steering_wheel_angle_rate_deg)
|
|
plan_send.lateralPlan.angleOffset = float(sm['liveParameters'].angleOffsetAverage)
|
|
plan_send.lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
|
|
|
|
plan_send.lateralPlan.desire = self.desire
|
|
plan_send.lateralPlan.laneChangeState = self.lane_change_state
|
|
plan_send.lateralPlan.laneChangeDirection = self.lane_change_direction
|
|
|
|
pm.send('lateralPlan', plan_send)
|
|
|
|
if LOG_MPC:
|
|
dat = messaging.new_message('liveMpc')
|
|
dat.liveMpc.x = list(self.mpc_solution[0].x)
|
|
dat.liveMpc.y = list(self.mpc_solution[0].y)
|
|
dat.liveMpc.psi = list(self.mpc_solution[0].psi)
|
|
dat.liveMpc.tire_angle = list(self.mpc_solution[0].tire_angle)
|
|
dat.liveMpc.cost = self.mpc_solution[0].cost
|
|
pm.send('liveMpc', dat)
|
|
|