You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							193 lines
						
					
					
						
							9.2 KiB
						
					
					
				
			
		
		
	
	
							193 lines
						
					
					
						
							9.2 KiB
						
					
					
				| import os
 | |
| import capnp
 | |
| import numpy as np
 | |
| from cereal import log
 | |
| from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
 | |
| 
 | |
| SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
 | |
| 
 | |
| ConfidenceClass = log.ModelDataV2.ConfidenceClass
 | |
| 
 | |
| 
 | |
| class PublishState:
 | |
|   def __init__(self):
 | |
|     self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
 | |
|     self.prev_brake_5ms2_probs = np.zeros(ModelConstants.FCW_5MS2_PROBS_WIDTH, dtype=np.float32)
 | |
|     self.prev_brake_3ms2_probs = np.zeros(ModelConstants.FCW_3MS2_PROBS_WIDTH, dtype=np.float32)
 | |
| 
 | |
| def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
 | |
|   builder.t = t
 | |
|   builder.x = x.tolist()
 | |
|   builder.y = y.tolist()
 | |
|   builder.z = z.tolist()
 | |
|   if x_std is not None:
 | |
|     builder.xStd = x_std.tolist()
 | |
|   if y_std is not None:
 | |
|     builder.yStd = y_std.tolist()
 | |
|   if z_std is not None:
 | |
|     builder.zStd = z_std.tolist()
 | |
| 
 | |
| def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
 | |
|   builder.t = t
 | |
|   builder.x = x.tolist()
 | |
|   builder.y = y.tolist()
 | |
|   builder.v = v.tolist()
 | |
|   builder.a = a.tolist()
 | |
|   if x_std is not None:
 | |
|     builder.xStd = x_std.tolist()
 | |
|   if y_std is not None:
 | |
|     builder.yStd = y_std.tolist()
 | |
|   if v_std is not None:
 | |
|     builder.vStd = v_std.tolist()
 | |
|   if a_std is not None:
 | |
|     builder.aStd = a_std.tolist()
 | |
| 
 | |
| def fill_xyz_poly(builder, degree, x, y, z):
 | |
|   xyz = np.stack([x, y, z], axis=1)
 | |
|   coeffs = np.polynomial.polynomial.polyfit(ModelConstants.T_IDXS, xyz, deg=degree)
 | |
|   builder.xCoefficients = coeffs[:, 0].tolist()
 | |
|   builder.yCoefficients = coeffs[:, 1].tolist()
 | |
|   builder.zCoefficients = coeffs[:, 2].tolist()
 | |
| 
 | |
| def fill_lane_line_meta(builder, lane_lines, lane_line_probs):
 | |
|   builder.leftY = lane_lines[1].y[0]
 | |
|   builder.leftProb = lane_line_probs[1]
 | |
|   builder.rightY = lane_lines[2].y[0]
 | |
|   builder.rightProb = lane_line_probs[2]
 | |
| 
 | |
| def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._DynamicStructBuilder,
 | |
|                    net_output_data: dict[str, np.ndarray], action: log.ModelDataV2.Action,
 | |
|                    publish_state: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int,
 | |
|                    frame_id: int, frame_drop: float, timestamp_eof: int, model_execution_time: float,
 | |
|                    valid: bool) -> None:
 | |
|   frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
 | |
|   frame_drop_perc = frame_drop * 100
 | |
|   extended_msg.valid = valid
 | |
|   base_msg.valid = valid
 | |
| 
 | |
|   driving_model_data = base_msg.drivingModelData
 | |
| 
 | |
|   driving_model_data.frameId = vipc_frame_id
 | |
|   driving_model_data.frameIdExtra = vipc_frame_id_extra
 | |
|   driving_model_data.frameDropPerc = frame_drop_perc
 | |
|   driving_model_data.modelExecutionTime = model_execution_time
 | |
| 
 | |
|   driving_model_data.action = action
 | |
| 
 | |
|   modelV2 = extended_msg.modelV2
 | |
|   modelV2.frameId = vipc_frame_id
 | |
|   modelV2.frameIdExtra = vipc_frame_id_extra
 | |
|   modelV2.frameAge = frame_age
 | |
|   modelV2.frameDropPerc = frame_drop_perc
 | |
|   modelV2.timestampEof = timestamp_eof
 | |
|   modelV2.modelExecutionTime = model_execution_time
 | |
| 
 | |
|   # plan
 | |
|   fill_xyzt(modelV2.position, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
 | |
|   fill_xyzt(modelV2.velocity, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
 | |
|   fill_xyzt(modelV2.acceleration, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
 | |
|   fill_xyzt(modelV2.orientation, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
 | |
|   fill_xyzt(modelV2.orientationRate, ModelConstants.T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
 | |
| 
 | |
|   # poly path
 | |
|   fill_xyz_poly(driving_model_data.path, ModelConstants.POLY_PATH_DEGREE, *net_output_data['plan'][0,:,Plan.POSITION].T)
 | |
| 
 | |
|   # action
 | |
|   modelV2.action = action
 | |
| 
 | |
|   # times at X_IDXS of edges and lines aren't used
 | |
|   LINE_T_IDXS: list[float] = []
 | |
| 
 | |
|   # lane lines
 | |
|   modelV2.init('laneLines', 4)
 | |
|   for i in range(4):
 | |
|     lane_line = modelV2.laneLines[i]
 | |
|     fill_xyzt(lane_line, LINE_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
 | |
|   modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
 | |
|   modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
 | |
| 
 | |
|   fill_lane_line_meta(driving_model_data.laneLineMeta, modelV2.laneLines, modelV2.laneLineProbs)
 | |
| 
 | |
|   # road edges
 | |
|   modelV2.init('roadEdges', 2)
 | |
|   for i in range(2):
 | |
|     road_edge = modelV2.roadEdges[i]
 | |
|     fill_xyzt(road_edge, LINE_T_IDXS, np.array(ModelConstants.X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
 | |
|   modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
 | |
| 
 | |
|   # leads
 | |
|   modelV2.init('leadsV3', 3)
 | |
|   for i in range(3):
 | |
|     lead = modelV2.leadsV3[i]
 | |
|     fill_xyvat(lead, ModelConstants.LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
 | |
|     lead.prob = net_output_data['lead_prob'][0,i].tolist()
 | |
|     lead.probTime = ModelConstants.LEAD_T_OFFSETS[i]
 | |
| 
 | |
|   # meta
 | |
|   meta = modelV2.meta
 | |
|   meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
 | |
|   meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
 | |
|   meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
 | |
|   meta.init('disengagePredictions')
 | |
|   disengage_predictions = meta.disengagePredictions
 | |
|   disengage_predictions.t = ModelConstants.META_T_IDXS
 | |
|   disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
 | |
|   disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
 | |
|   disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
 | |
|   disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
 | |
|   disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
 | |
|   disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
 | |
|   disengage_predictions.gasPressProbs = net_output_data['meta'][0,Meta.GAS_PRESS].tolist()
 | |
|   disengage_predictions.brakePressProbs = net_output_data['meta'][0,Meta.BRAKE_PRESS].tolist()
 | |
| 
 | |
|   publish_state.prev_brake_5ms2_probs[:-1] = publish_state.prev_brake_5ms2_probs[1:]
 | |
|   publish_state.prev_brake_5ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_5][0]
 | |
|   publish_state.prev_brake_3ms2_probs[:-1] = publish_state.prev_brake_3ms2_probs[1:]
 | |
|   publish_state.prev_brake_3ms2_probs[-1] = net_output_data['meta'][0,Meta.HARD_BRAKE_3][0]
 | |
|   hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > ModelConstants.FCW_THRESHOLDS_5MS2).all() and \
 | |
|     (publish_state.prev_brake_3ms2_probs > ModelConstants.FCW_THRESHOLDS_3MS2).all()
 | |
|   meta.hardBrakePredicted = hard_brake_predicted.item()
 | |
| 
 | |
|   # confidence
 | |
|   if vipc_frame_id % (2*ModelConstants.MODEL_RUN_FREQ) == 0:
 | |
|     # any disengage prob
 | |
|     brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
 | |
|     gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
 | |
|     steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
 | |
|     any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
 | |
|     # independent disengage prob for each 2s slice
 | |
|     ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
 | |
|     # rolling buf for 2, 4, 6, 8, 10s
 | |
|     publish_state.disengage_buffer[:-ModelConstants.DISENGAGE_WIDTH] = publish_state.disengage_buffer[ModelConstants.DISENGAGE_WIDTH:]
 | |
|     publish_state.disengage_buffer[-ModelConstants.DISENGAGE_WIDTH:] = ind_disengage_probs
 | |
| 
 | |
|   score = 0.
 | |
|   for i in range(ModelConstants.DISENGAGE_WIDTH):
 | |
|     score += publish_state.disengage_buffer[i*ModelConstants.DISENGAGE_WIDTH+ModelConstants.DISENGAGE_WIDTH-1-i].item() / ModelConstants.DISENGAGE_WIDTH
 | |
|   if score < ModelConstants.RYG_GREEN:
 | |
|     modelV2.confidence = ConfidenceClass.green
 | |
|   elif score < ModelConstants.RYG_YELLOW:
 | |
|     modelV2.confidence = ConfidenceClass.yellow
 | |
|   else:
 | |
|     modelV2.confidence = ConfidenceClass.red
 | |
| 
 | |
|   # raw prediction if enabled
 | |
|   if SEND_RAW_PRED:
 | |
|     modelV2.rawPredictions = net_output_data['raw_pred'].tobytes()
 | |
| 
 | |
| def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: dict[str, np.ndarray],
 | |
|                   vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
 | |
|   msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
 | |
|   cameraOdometry = msg.cameraOdometry
 | |
| 
 | |
|   cameraOdometry.frameId = vipc_frame_id
 | |
|   cameraOdometry.timestampEof = timestamp_eof
 | |
| 
 | |
|   cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
 | |
|   cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
 | |
|   cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
 | |
|   cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
 | |
|   cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
 | |
|   cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
 | |
|   cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
 | |
|   cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()
 | |
| 
 |