You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							5.2 KiB
						
					
					
				import numpy as np
 | 
						|
from common.realtime import sec_since_boot, DT_MDL
 | 
						|
from common.numpy_fast import interp
 | 
						|
from system.swaglog import cloudlog
 | 
						|
from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
 | 
						|
from selfdrive.controls.lib.drive_helpers import CONTROL_N, MPC_COST_LAT, LAT_MPC_N, CAR_ROTATION_RADIUS
 | 
						|
from selfdrive.controls.lib.lane_planner import LanePlanner, TRAJECTORY_SIZE
 | 
						|
from selfdrive.controls.lib.desire_helper import DesireHelper
 | 
						|
import cereal.messaging as messaging
 | 
						|
from cereal import log
 | 
						|
 | 
						|
 | 
						|
class LateralPlanner:
 | 
						|
  def __init__(self, use_lanelines=True, wide_camera=False):
 | 
						|
    self.use_lanelines = use_lanelines
 | 
						|
    self.LP = LanePlanner(wide_camera)
 | 
						|
    self.DH = DesireHelper()
 | 
						|
 | 
						|
    self.last_cloudlog_t = 0
 | 
						|
    self.solution_invalid_cnt = 0
 | 
						|
 | 
						|
    self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
 | 
						|
    self.path_xyz_stds = np.ones((TRAJECTORY_SIZE, 3))
 | 
						|
    self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
 | 
						|
    self.t_idxs = np.arange(TRAJECTORY_SIZE)
 | 
						|
    self.y_pts = np.zeros(TRAJECTORY_SIZE)
 | 
						|
 | 
						|
    self.lat_mpc = LateralMpc()
 | 
						|
    self.reset_mpc(np.zeros(4))
 | 
						|
 | 
						|
  def reset_mpc(self, x0=np.zeros(4)):
 | 
						|
    self.x0 = x0
 | 
						|
    self.lat_mpc.reset(x0=self.x0)
 | 
						|
 | 
						|
  def update(self, sm):
 | 
						|
    v_ego = sm['carState'].vEgo
 | 
						|
    measured_curvature = sm['controlsState'].curvature
 | 
						|
 | 
						|
    # Parse model predictions
 | 
						|
    md = sm['modelV2']
 | 
						|
    self.LP.parse_model(md)
 | 
						|
    if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
 | 
						|
      self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
 | 
						|
      self.t_idxs = np.array(md.position.t)
 | 
						|
      self.plan_yaw = list(md.orientation.z)
 | 
						|
    if len(md.position.xStd) == TRAJECTORY_SIZE:
 | 
						|
      self.path_xyz_stds = np.column_stack([md.position.xStd, md.position.yStd, md.position.zStd])
 | 
						|
 | 
						|
    # Lane change logic
 | 
						|
    lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
 | 
						|
    self.DH.update(sm['carState'], sm['controlsState'].active, lane_change_prob)
 | 
						|
 | 
						|
    # Turn off lanes during lane change
 | 
						|
    if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
 | 
						|
      self.LP.lll_prob *= self.DH.lane_change_ll_prob
 | 
						|
      self.LP.rll_prob *= self.DH.lane_change_ll_prob
 | 
						|
 | 
						|
    # Calculate final driving path and set MPC costs
 | 
						|
    if self.use_lanelines:
 | 
						|
      d_path_xyz = self.LP.get_d_path(v_ego, self.t_idxs, self.path_xyz)
 | 
						|
      self.lat_mpc.set_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.HEADING, MPC_COST_LAT.STEER_RATE)
 | 
						|
    else:
 | 
						|
      d_path_xyz = self.path_xyz
 | 
						|
      # Heading cost is useful at low speed, otherwise end of plan can be off-heading
 | 
						|
      heading_cost = interp(v_ego, [5.0, 10.0], [MPC_COST_LAT.HEADING, 0.15])
 | 
						|
      self.lat_mpc.set_weights(MPC_COST_LAT.PATH, heading_cost, MPC_COST_LAT.STEER_RATE)
 | 
						|
 | 
						|
    y_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(d_path_xyz, axis=1), d_path_xyz[:, 1])
 | 
						|
    heading_pts = np.interp(v_ego * self.t_idxs[:LAT_MPC_N + 1], np.linalg.norm(self.path_xyz, axis=1), self.plan_yaw)
 | 
						|
    self.y_pts = y_pts
 | 
						|
 | 
						|
    assert len(y_pts) == LAT_MPC_N + 1
 | 
						|
    assert len(heading_pts) == LAT_MPC_N + 1
 | 
						|
    # self.x0[4] = v_ego
 | 
						|
    p = np.array([v_ego, CAR_ROTATION_RADIUS])
 | 
						|
    self.lat_mpc.run(self.x0,
 | 
						|
                     p,
 | 
						|
                     y_pts,
 | 
						|
                     heading_pts)
 | 
						|
    # init state for next
 | 
						|
    # mpc.u_sol is the desired curvature rate given x0 curv state.
 | 
						|
    # with x0[3] = measured_curvature, this would be the actual desired rate.
 | 
						|
    # instead, interpolate x_sol so that x0[3] is the desired curvature for lat_control.
 | 
						|
    self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
 | 
						|
 | 
						|
    #  Check for infeasible MPC solution
 | 
						|
    mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
 | 
						|
    t = sec_since_boot()
 | 
						|
    if mpc_nans or self.lat_mpc.solution_status != 0:
 | 
						|
      self.reset_mpc()
 | 
						|
      self.x0[3] = measured_curvature
 | 
						|
      if t > self.last_cloudlog_t + 5.0:
 | 
						|
        self.last_cloudlog_t = t
 | 
						|
        cloudlog.warning("Lateral mpc - nan: True")
 | 
						|
 | 
						|
    if self.lat_mpc.cost > 20000. or mpc_nans:
 | 
						|
      self.solution_invalid_cnt += 1
 | 
						|
    else:
 | 
						|
      self.solution_invalid_cnt = 0
 | 
						|
 | 
						|
  def publish(self, sm, pm):
 | 
						|
    plan_solution_valid = self.solution_invalid_cnt < 2
 | 
						|
    plan_send = messaging.new_message('lateralPlan')
 | 
						|
    plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
 | 
						|
 | 
						|
    lateralPlan = plan_send.lateralPlan
 | 
						|
    lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
 | 
						|
    lateralPlan.laneWidth = float(self.LP.lane_width)
 | 
						|
    lateralPlan.dPathPoints = self.y_pts.tolist()
 | 
						|
    lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
 | 
						|
    lateralPlan.curvatures = self.lat_mpc.x_sol[0:CONTROL_N, 3].tolist()
 | 
						|
    lateralPlan.curvatureRates = [float(x) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
 | 
						|
    lateralPlan.lProb = float(self.LP.lll_prob)
 | 
						|
    lateralPlan.rProb = float(self.LP.rll_prob)
 | 
						|
    lateralPlan.dProb = float(self.LP.d_prob)
 | 
						|
 | 
						|
    lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
 | 
						|
    lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
 | 
						|
 | 
						|
    lateralPlan.desire = self.DH.desire
 | 
						|
    lateralPlan.useLaneLines = self.use_lanelines
 | 
						|
    lateralPlan.laneChangeState = self.DH.lane_change_state
 | 
						|
    lateralPlan.laneChangeDirection = self.DH.lane_change_direction
 | 
						|
 | 
						|
    pm.send('lateralPlan', plan_send)
 | 
						|
 |