openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

93 lines
3.6 KiB

import onnx
import itertools
import os
import sys
import numpy as np
from typing import Any
from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel
ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
def attributeproto_fp16_to_fp32(attr):
float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
attr.data_type = 1
attr.raw_data = float32_list.astype(np.float32).tobytes()
def convert_fp16_to_fp32(path):
model = onnx.load(path)
for i in model.graph.initializer:
if i.data_type == 10:
attributeproto_fp16_to_fp32(i)
for i in itertools.chain(model.graph.input, model.graph.output):
if i.type.tensor_type.elem_type == 10:
i.type.tensor_type.elem_type = 1
for i in model.graph.node:
for a in i.attribute:
if hasattr(a, 't'):
if a.t.data_type == 10:
attributeproto_fp16_to_fp32(a.t)
return model.SerializeToString()
def create_ort_session(path, fp16_to_fp32):
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OMP_WAIT_POLICY"] = "PASSIVE"
import onnxruntime as ort
print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr)
options = ort.SessionOptions()
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
provider: str | tuple[str, dict[Any, Any]]
if 'OpenVINOExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
provider = 'OpenVINOExecutionProvider'
elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
options.intra_op_num_threads = 2
provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'DEFAULT'})
else:
options.intra_op_num_threads = 2
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
provider = 'CPUExecutionProvider'
model_data = convert_fp16_to_fp32(path) if fp16_to_fp32 else path
print("Onnx selected provider: ", [provider], file=sys.stderr)
ort_session = ort.InferenceSession(model_data, options, providers=[provider])
print("Onnx using ", ort_session.get_providers(), file=sys.stderr)
return ort_session
class ONNXModel(RunModel):
def __init__(self, path, output, runtime, use_tf8, cl_context):
self.inputs = {}
self.output = output
self.use_tf8 = use_tf8
self.session = create_ort_session(path, fp16_to_fp32=True)
self.input_names = [x.name for x in self.session.get_inputs()]
self.input_shapes = {x.name: [1, *x.shape[1:]] for x in self.session.get_inputs()}
self.input_dtypes = {x.name: ORT_TYPES_TO_NP_TYPES[x.type] for x in self.session.get_inputs()}
# run once to initialize CUDA provider
if "CUDAExecutionProvider" in self.session.get_providers():
self.session.run(None, {k: np.zeros(self.input_shapes[k], dtype=self.input_dtypes[k]) for k in self.input_names})
print("ready to run onnx model", self.input_shapes, file=sys.stderr)
def addInput(self, name, buffer):
assert name in self.input_names
self.inputs[name] = buffer
def setInputBuffer(self, name, buffer):
assert name in self.inputs
self.inputs[name] = buffer
def getCLBuffer(self, name):
return None
def execute(self):
inputs = {k: (v.view(np.uint8) / 255. if self.use_tf8 and k == 'input_img' else v) for k,v in self.inputs.items()}
inputs = {k: v.reshape(self.input_shapes[k]).astype(self.input_dtypes[k]) for k,v in inputs.items()}
outputs = self.session.run(None, inputs)
assert len(outputs) == 1, "Only single model outputs are supported"
self.output[:] = outputs[0]
return self.output