openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

666 lines
18 KiB

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <sched.h>
#include <sys/time.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <assert.h>
#include <pthread.h>
#include <zmq.h>
#include <libusb.h>
#include <capnp/serialize.h>
#include "cereal/gen/cpp/log.capnp.h"
#include "cereal/gen/cpp/car.capnp.h"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include <algorithm>
// double the FIFO size
#define RECV_SIZE (0x1000)
#define TIMEOUT 0
#define SAFETY_NOOUTPUT 0
#define SAFETY_HONDA 1
#define SAFETY_TOYOTA 2
#define SAFETY_ELM327 0xE327
#define SAFETY_GM 3
#define SAFETY_HONDA_BOSCH 4
namespace {
volatile int do_exit = 0;
libusb_context *ctx = NULL;
libusb_device_handle *dev_handle;
pthread_mutex_t usb_lock;
bool spoofing_started = false;
bool fake_send = false;
bool loopback_can = false;
bool has_pigeon = false;
pthread_t safety_setter_thread_handle = -1;
pthread_t pigeon_thread_handle = -1;
bool pigeon_needs_init;
void pigeon_init();
void *pigeon_thread(void *crap);
void *safety_setter_thread(void *s) {
char *value;
size_t value_sz = 0;
LOGW("waiting for params to set safety model");
while (1) {
if (do_exit) return NULL;
const int result = read_db_value(NULL, "CarParams", &value, &value_sz);
if (value_sz > 0) break;
usleep(100*1000);
}
LOGW("got %d bytes CarParams", value_sz);
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((value_sz / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), value, value_sz);
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::CarParams::Reader car_params = cmsg.getRoot<cereal::CarParams>();
auto safety_model = car_params.getSafetyModel();
auto safety_param = car_params.getSafetyParam();
LOGW("setting safety model: %d with param %d", safety_model, safety_param);
int safety_setting = 0;
switch (safety_model) {
case (int)cereal::CarParams::SafetyModels::NO_OUTPUT:
safety_setting = SAFETY_NOOUTPUT;
break;
case (int)cereal::CarParams::SafetyModels::HONDA:
safety_setting = SAFETY_HONDA;
break;
case (int)cereal::CarParams::SafetyModels::TOYOTA:
safety_setting = SAFETY_TOYOTA;
break;
case (int)cereal::CarParams::SafetyModels::ELM327:
safety_setting = SAFETY_ELM327;
break;
case (int)cereal::CarParams::SafetyModels::GM:
safety_setting = SAFETY_GM;
break;
case (int)cereal::CarParams::SafetyModels::HONDA_BOSCH:
safety_setting = SAFETY_HONDA_BOSCH;
break;
default:
LOGE("unknown safety model: %d", safety_model);
}
pthread_mutex_lock(&usb_lock);
// set in the mutex to avoid race
safety_setter_thread_handle = -1;
libusb_control_transfer(dev_handle, 0x40, 0xdc, safety_setting, safety_param, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
return NULL;
}
// must be called before threads or with mutex
bool usb_connect() {
int err;
unsigned char is_pigeon[1] = {0};
dev_handle = libusb_open_device_with_vid_pid(ctx, 0xbbaa, 0xddcc);
if (dev_handle == NULL) { goto fail; }
err = libusb_set_configuration(dev_handle, 1);
if (err != 0) { goto fail; }
err = libusb_claim_interface(dev_handle, 0);
if (err != 0) { goto fail; }
if (loopback_can) {
libusb_control_transfer(dev_handle, 0xc0, 0xe5, 1, 0, NULL, 0, TIMEOUT);
}
// power off ESP
libusb_control_transfer(dev_handle, 0xc0, 0xd9, 0, 0, NULL, 0, TIMEOUT);
// power on charging (may trigger a reconnection, should be okay)
#ifndef __x86_64__
libusb_control_transfer(dev_handle, 0xc0, 0xe6, 1, 0, NULL, 0, TIMEOUT);
#else
LOGW("not enabling charging on x86_64");
#endif
// no output is the default
if (getenv("RECVMOCK")) {
libusb_control_transfer(dev_handle, 0x40, 0xdc, SAFETY_ELM327, 0, NULL, 0, TIMEOUT);
} else {
libusb_control_transfer(dev_handle, 0x40, 0xdc, SAFETY_NOOUTPUT, 0, NULL, 0, TIMEOUT);
}
if (safety_setter_thread_handle == -1) {
err = pthread_create(&safety_setter_thread_handle, NULL, safety_setter_thread, NULL);
assert(err == 0);
}
libusb_control_transfer(dev_handle, 0xc0, 0xc1, 0, 0, is_pigeon, 1, TIMEOUT);
if (is_pigeon[0]) {
LOGW("grey panda detected");
pigeon_needs_init = true;
if (pigeon_thread_handle == -1) {
err = pthread_create(&pigeon_thread_handle, NULL, pigeon_thread, NULL);
assert(err == 0);
}
}
return true;
fail:
return false;
}
void usb_retry_connect() {
LOG("attempting to connect");
while (!usb_connect()) { usleep(100*1000); }
LOGW("connected to board");
}
void handle_usb_issue(int err, const char func[]) {
LOGE_100("usb error %d \"%s\" in %s", err, libusb_strerror((enum libusb_error)err), func);
if (err == -4) {
LOGE("lost connection");
usb_retry_connect();
}
// TODO: check other errors, is simply retrying okay?
}
void can_recv(void *s) {
int err;
uint32_t data[RECV_SIZE/4];
int recv;
uint32_t f1, f2;
// do recv
pthread_mutex_lock(&usb_lock);
do {
err = libusb_bulk_transfer(dev_handle, 0x81, (uint8_t*)data, RECV_SIZE, &recv, TIMEOUT);
if (err != 0) { handle_usb_issue(err, __func__); }
if (err == -8) { LOGE_100("overflow got 0x%x", recv); };
// timeout is okay to exit, recv still happened
if (err == -7) { break; }
} while(err != 0);
pthread_mutex_unlock(&usb_lock);
// return if length is 0
if (recv <= 0) {
return;
}
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto canData = event.initCan(recv/0x10);
// populate message
for (int i = 0; i<(recv/0x10); i++) {
if (data[i*4] & 4) {
// extended
canData[i].setAddress(data[i*4] >> 3);
//printf("got extended: %x\n", data[i*4] >> 3);
} else {
// normal
canData[i].setAddress(data[i*4] >> 21);
}
canData[i].setBusTime(data[i*4+1] >> 16);
int len = data[i*4+1]&0xF;
canData[i].setDat(kj::arrayPtr((uint8_t*)&data[i*4+2], len));
canData[i].setSrc((data[i*4+1] >> 4) & 0xff);
}
// send to can
auto words = capnp::messageToFlatArray(msg);
auto bytes = words.asBytes();
zmq_send(s, bytes.begin(), bytes.size(), 0);
}
void can_health(void *s) {
int cnt;
// copied from board/main.c
struct __attribute__((packed)) health {
uint32_t voltage;
uint32_t current;
uint8_t started;
uint8_t controls_allowed;
uint8_t gas_interceptor_detected;
uint8_t started_signal_detected;
uint8_t started_alt;
} health;
// recv from board
pthread_mutex_lock(&usb_lock);
do {
cnt = libusb_control_transfer(dev_handle, 0xc0, 0xd2, 0, 0, (unsigned char*)&health, sizeof(health), TIMEOUT);
if (cnt != sizeof(health)) { handle_usb_issue(cnt, __func__); }
} while(cnt != sizeof(health));
pthread_mutex_unlock(&usb_lock);
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto healthData = event.initHealth();
// set fields
healthData.setVoltage(health.voltage);
healthData.setCurrent(health.current);
if (spoofing_started) {
healthData.setStarted(1);
} else {
healthData.setStarted(health.started);
}
healthData.setControlsAllowed(health.controls_allowed);
healthData.setGasInterceptorDetected(health.gas_interceptor_detected);
healthData.setStartedSignalDetected(health.started_signal_detected);
// send to health
auto words = capnp::messageToFlatArray(msg);
auto bytes = words.asBytes();
zmq_send(s, bytes.begin(), bytes.size(), 0);
}
void can_send(void *s) {
int err;
// recv from sendcan
zmq_msg_t msg;
zmq_msg_init(&msg);
err = zmq_msg_recv(&msg, s, 0);
assert(err >= 0);
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((zmq_msg_size(&msg) / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), zmq_msg_data(&msg), zmq_msg_size(&msg));
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
int msg_count = event.getCan().size();
uint32_t *send = (uint32_t*)malloc(msg_count*0x10);
memset(send, 0, msg_count*0x10);
for (int i = 0; i < msg_count; i++) {
auto cmsg = event.getSendcan()[i];
if (cmsg.getAddress() >= 0x800) {
// extended
send[i*4] = (cmsg.getAddress() << 3) | 5;
} else {
// normal
send[i*4] = (cmsg.getAddress() << 21) | 1;
}
assert(cmsg.getDat().size() <= 8);
send[i*4+1] = cmsg.getDat().size() | (cmsg.getSrc() << 4);
memcpy(&send[i*4+2], cmsg.getDat().begin(), cmsg.getDat().size());
}
// release msg
zmq_msg_close(&msg);
// send to board
int sent;
pthread_mutex_lock(&usb_lock);
if (!fake_send) {
do {
err = libusb_bulk_transfer(dev_handle, 3, (uint8_t*)send, msg_count*0x10, &sent, TIMEOUT);
if (err != 0 || msg_count*0x10 != sent) { handle_usb_issue(err, __func__); }
} while(err != 0);
}
pthread_mutex_unlock(&usb_lock);
// done
free(send);
}
// **** threads ****
void *thermal_thread(void *crap) {
int err;
LOGD("start thermal thread");
// thermal = 8005
void *context = zmq_ctx_new();
void *subscriber = zmq_socket(context, ZMQ_SUB);
zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, "", 0);
zmq_connect(subscriber, "tcp://127.0.0.1:8005");
// run as fast as messages come in
while (!do_exit) {
// recv from thermal
zmq_msg_t msg;
zmq_msg_init(&msg);
err = zmq_msg_recv(&msg, subscriber, 0);
assert(err >= 0);
// format for board, make copy due to alignment issues, will be freed on out of scope
// copied from send thread...
auto amsg = kj::heapArray<capnp::word>((zmq_msg_size(&msg) / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), zmq_msg_data(&msg), zmq_msg_size(&msg));
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
uint16_t target_fan_speed = event.getThermal().getFanSpeed();
//LOGW("setting fan speed %d", target_fan_speed);
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0xc0, 0xd3, target_fan_speed, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
// turn the fan off when we exit
libusb_control_transfer(dev_handle, 0xc0, 0xd3, 0, 0, NULL, 0, TIMEOUT);
return NULL;
}
void *can_send_thread(void *crap) {
LOGD("start send thread");
// sendcan = 8017
void *context = zmq_ctx_new();
void *subscriber = zmq_socket(context, ZMQ_SUB);
zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, "", 0);
zmq_connect(subscriber, "tcp://127.0.0.1:8017");
// run as fast as messages come in
while (!do_exit) {
can_send(subscriber);
}
return NULL;
}
void *can_recv_thread(void *crap) {
LOGD("start recv thread");
// can = 8006
void *context = zmq_ctx_new();
void *publisher = zmq_socket(context, ZMQ_PUB);
zmq_bind(publisher, "tcp://*:8006");
// run at ~200hz
while (!do_exit) {
can_recv(publisher);
// 5ms
usleep(5*1000);
}
return NULL;
}
void *can_health_thread(void *crap) {
LOGD("start health thread");
// health = 8011
void *context = zmq_ctx_new();
void *publisher = zmq_socket(context, ZMQ_PUB);
zmq_bind(publisher, "tcp://*:8011");
// run at 1hz
while (!do_exit) {
can_health(publisher);
usleep(1000*1000);
}
return NULL;
}
#define pigeon_send(x) _pigeon_send(x, sizeof(x)-1)
void hexdump(unsigned char *d, int l) {
for (int i = 0; i < l; i++) {
if (i!=0 && i%0x10 == 0) printf("\n");
printf("%2.2X ", d[i]);
}
printf("\n");
}
void _pigeon_send(const char *dat, int len) {
int sent;
unsigned char a[0x20];
int err;
a[0] = 1;
for (int i=0; i<len; i+=0x20) {
int ll = std::min(0x20, len-i);
memcpy(&a[1], &dat[i], ll);
pthread_mutex_lock(&usb_lock);
err = libusb_bulk_transfer(dev_handle, 2, a, ll+1, &sent, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
assert(err == 0);
assert(sent == ll+1);
//hexdump(a, ll+1);
pthread_mutex_unlock(&usb_lock);
}
}
void pigeon_set_power(int power) {
pthread_mutex_lock(&usb_lock);
int err = libusb_control_transfer(dev_handle, 0xc0, 0xd9, power, 0, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
pthread_mutex_unlock(&usb_lock);
}
void pigeon_set_baud(int baud) {
int err;
pthread_mutex_lock(&usb_lock);
err = libusb_control_transfer(dev_handle, 0xc0, 0xe2, 1, 0, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
err = libusb_control_transfer(dev_handle, 0xc0, 0xe4, 1, baud/300, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
pthread_mutex_unlock(&usb_lock);
}
void pigeon_init() {
usleep(1000*1000);
LOGW("grey panda start");
// power off pigeon
pigeon_set_power(0);
usleep(100*1000);
// 9600 baud at init
pigeon_set_baud(9600);
// power on pigeon
pigeon_set_power(1);
usleep(500*1000);
// baud rate upping
pigeon_send("\x24\x50\x55\x42\x58\x2C\x34\x31\x2C\x31\x2C\x30\x30\x30\x37\x2C\x30\x30\x30\x33\x2C\x34\x36\x30\x38\x30\x30\x2C\x30\x2A\x31\x35\x0D\x0A");
usleep(100*1000);
// set baud rate to 460800
pigeon_set_baud(460800);
usleep(100*1000);
// init from ubloxd
pigeon_send("\xB5\x62\x06\x00\x14\x00\x03\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x01\x00\x00\x00\x00\x00\x1E\x7F");
pigeon_send("\xB5\x62\x06\x3E\x00\x00\x44\xD2");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x00\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\x35");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x01\x00\x00\x00\xC0\x08\x00\x00\x00\x08\x07\x00\x01\x00\x01\x00\x00\x00\x00\x00\xF4\x80");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x04\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1D\x85");
pigeon_send("\xB5\x62\x06\x00\x00\x00\x06\x18");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x01\x08\x22");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x02\x09\x23");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x03\x0A\x24");
pigeon_send("\xB5\x62\x06\x08\x06\x00\x64\x00\x01\x00\x00\x00\x79\x10");
pigeon_send("\xB5\x62\x06\x24\x24\x00\x05\x00\x04\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5A\x63");
pigeon_send("\xB5\x62\x06\x1E\x14\x00\x00\x00\x00\x00\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3C\x37");
pigeon_send("\xB5\x62\x06\x24\x00\x00\x2A\x84");
pigeon_send("\xB5\x62\x06\x23\x00\x00\x29\x81");
pigeon_send("\xB5\x62\x06\x1E\x00\x00\x24\x72");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x01\x07\x01\x13\x51");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x02\x15\x01\x22\x70");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x02\x13\x01\x20\x6C");
LOGW("grey panda is ready to fly");
}
static void pigeon_publish_raw(void *publisher, unsigned char *dat, int alen) {
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto ublox_raw = event.initUbloxRaw(alen);
memcpy(ublox_raw.begin(), dat, alen);
// send to ubloxRaw
auto words = capnp::messageToFlatArray(msg);
auto bytes = words.asBytes();
zmq_send(publisher, bytes.begin(), bytes.size(), 0);
}
void *pigeon_thread(void *crap) {
// ubloxRaw = 8042
void *context = zmq_ctx_new();
void *publisher = zmq_socket(context, ZMQ_PUB);
zmq_bind(publisher, "tcp://*:8042");
// run at ~100hz
unsigned char dat[0x1000];
uint64_t cnt = 0;
while (!do_exit) {
if (pigeon_needs_init) {
pigeon_needs_init = false;
pigeon_init();
}
int alen = 0;
while (alen < 0xfc0) {
pthread_mutex_lock(&usb_lock);
int len = libusb_control_transfer(dev_handle, 0xc0, 0xe0, 1, 0, dat+alen, 0x40, TIMEOUT);
if (len < 0) { handle_usb_issue(len, __func__); }
pthread_mutex_unlock(&usb_lock);
if (len <= 0) break;
//printf("got %d\n", len);
alen += len;
}
if (alen > 0) {
pigeon_publish_raw(publisher, dat, alen);
}
// 10ms
usleep(10*1000);
cnt++;
}
return NULL;
}
int set_realtime_priority(int level) {
// should match python using chrt
struct sched_param sa;
memset(&sa, 0, sizeof(sa));
sa.sched_priority = level;
return sched_setscheduler(getpid(), SCHED_FIFO, &sa);
}
}
int main() {
int err;
LOGW("starting boardd");
// set process priority
err = set_realtime_priority(4);
LOG("setpriority returns %d", err);
// check the environment
if (getenv("STARTED")) {
spoofing_started = true;
}
if (getenv("FAKESEND")) {
fake_send = true;
}
if (getenv("BOARDD_LOOPBACK")){
loopback_can = true;
}
// init libusb
err = libusb_init(&ctx);
assert(err == 0);
libusb_set_debug(ctx, 3);
// connect to the board
usb_retry_connect();
// create threads
pthread_t can_health_thread_handle;
err = pthread_create(&can_health_thread_handle, NULL,
can_health_thread, NULL);
assert(err == 0);
pthread_t can_send_thread_handle;
err = pthread_create(&can_send_thread_handle, NULL,
can_send_thread, NULL);
assert(err == 0);
pthread_t can_recv_thread_handle;
err = pthread_create(&can_recv_thread_handle, NULL,
can_recv_thread, NULL);
assert(err == 0);
pthread_t thermal_thread_handle;
err = pthread_create(&thermal_thread_handle, NULL,
thermal_thread, NULL);
assert(err == 0);
// join threads
err = pthread_join(thermal_thread_handle, NULL);
assert(err == 0);
err = pthread_join(can_recv_thread_handle, NULL);
assert(err == 0);
err = pthread_join(can_send_thread_handle, NULL);
assert(err == 0);
err = pthread_join(can_health_thread_handle, NULL);
assert(err == 0);
//while (!do_exit) usleep(1000);
// destruct libusb
libusb_close(dev_handle);
libusb_exit(ctx);
}