openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

103 lines
2.5 KiB

#include <acado_code_generation.hpp>
const int controlHorizon = 50;
using namespace std;
#define G 9.81
#define TR 1.8
#define RW(v_ego, v_l) (v_ego * TR - (v_l - v_ego) * TR + v_ego*v_ego/(2*G) - v_l*v_l / (2*G))
#define NORM_RW_ERROR(v_ego, v_l, p) ((RW(v_ego, v_l) + 4.0 - p)/(sqrt(v_ego + 0.5) + 0.1))
int main( )
{
USING_NAMESPACE_ACADO
DifferentialEquation f;
DifferentialState x_ego, v_ego, a_ego;
DifferentialState x_l, v_l, a_l;
OnlineData lambda;
Control j_ego;
auto desired = 4.0 + RW(v_ego, v_l);
auto d_l = x_l - x_ego;
// Equations of motion
f << dot(x_ego) == v_ego;
f << dot(v_ego) == a_ego;
f << dot(a_ego) == j_ego;
f << dot(x_l) == v_l;
f << dot(v_l) == a_l;
f << dot(a_l) == -lambda * a_l;
// Running cost
Function h;
h << exp(0.3 * NORM_RW_ERROR(v_ego, v_l, d_l)) - exp(0.3 * NORM_RW_ERROR(v_ego, v_l, desired));
h << (d_l - desired) / (0.1 * v_ego + 0.5);
h << a_ego * (1.0 + v_ego / 10.0);
h << j_ego * (1.0 + v_ego / 10.0);
// Weights are defined in mpc.
BMatrix Q(4,4); Q.setAll(true);
// Terminal cost
Function hN;
hN << exp(0.3 * NORM_RW_ERROR(v_ego, v_l, d_l)) - exp(0.3 * NORM_RW_ERROR(v_ego, v_l, desired));
hN << (d_l - desired) / (0.1 * v_ego + 0.5);
hN << a_ego * (1.0 + v_ego / 10.0);
// Weights are defined in mpc.
BMatrix QN(3,3); QN.setAll(true);
// Non uniform time grid
// First 5 timesteps are 0.2, after that it's 0.6
DMatrix numSteps(20, 1);
for (int i = 0; i < 5; i++){
numSteps(i) = 1;
}
for (int i = 5; i < 20; i++){
numSteps(i) = 3;
}
// Setup Optimal Control Problem
const double tStart = 0.0;
const double tEnd = 10.0;
OCP ocp( tStart, tEnd, numSteps);
ocp.subjectTo(f);
ocp.minimizeLSQ(Q, h);
ocp.minimizeLSQEndTerm(QN, hN);
ocp.subjectTo( 0.0 <= v_ego);
ocp.setNOD(1);
OCPexport mpc(ocp);
mpc.set( HESSIAN_APPROXIMATION, GAUSS_NEWTON );
mpc.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING );
mpc.set( INTEGRATOR_TYPE, INT_RK4 );
mpc.set( NUM_INTEGRATOR_STEPS, controlHorizon);
mpc.set( MAX_NUM_QP_ITERATIONS, 500);
mpc.set( CG_USE_VARIABLE_WEIGHTING_MATRIX, YES);
mpc.set( SPARSE_QP_SOLUTION, CONDENSING );
mpc.set( QP_SOLVER, QP_QPOASES );
mpc.set( HOTSTART_QP, YES );
mpc.set( GENERATE_TEST_FILE, NO);
mpc.set( GENERATE_MAKE_FILE, NO );
mpc.set( GENERATE_MATLAB_INTERFACE, NO );
mpc.set( GENERATE_SIMULINK_INTERFACE, NO );
if (mpc.exportCode( "mpc_export" ) != SUCCESSFUL_RETURN)
exit( EXIT_FAILURE );
mpc.printDimensionsQP( );
return EXIT_SUCCESS;
}