openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

118 lines
4.0 KiB

# tinygrad is a tensor library, and as a tensor library it has multiple parts
# 1. a "runtime". this allows buffer management, compilation, and running programs
# 2. a "Device" that uses the runtime but specifies compute in an abstract way for all
# 3. a "LazyBuffer" that fuses the compute into kernels, using memory only when needed
# 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()"
print("******** first, the runtime ***********")
from tinygrad.runtime.ops_cpu import ClangJITCompiler, MallocAllocator, CPUProgram
# allocate some buffers
out = MallocAllocator.alloc(4)
a = MallocAllocator.alloc(4)
b = MallocAllocator.alloc(4)
# load in some values (little endian)
MallocAllocator._copyin(a, memoryview(bytearray([2,0,0,0])))
MallocAllocator._copyin(b, memoryview(bytearray([3,0,0,0])))
# compile a program to a binary
lib = ClangJITCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }")
# create a runtime for the program
fxn = CPUProgram("add", lib)
# run the program
fxn(out, a, b)
# check the data out
print(val := MallocAllocator._as_buffer(out).cast("I").tolist()[0])
assert val == 5
print("******** second, the Device ***********")
DEVICE = "CPU" # NOTE: you can change this!
import struct
from tinygrad.dtype import dtypes
from tinygrad.device import Buffer, Device
from tinygrad.ops import UOp, Ops
from tinygrad.shape.shapetracker import ShapeTracker
# allocate some buffers + load in values
out = Buffer(DEVICE, 1, dtypes.int32).allocate()
a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# NOTE: a._buf is the same as the return from MallocAllocator.alloc
# describe the computation
buf_1 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 1)
buf_2 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 2)
ld_1 = UOp(Ops.LOAD, dtypes.int32, (buf_1, ShapeTracker.from_shape((1,)).to_uop()))
ld_2 = UOp(Ops.LOAD, dtypes.int32, (buf_2, ShapeTracker.from_shape((1,)).to_uop()))
alu = ld_1 + ld_2
output_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 0)
st_0 = UOp(Ops.STORE, dtypes.void, (output_buf, ShapeTracker.from_shape((1,)).to_uop(), alu))
s = UOp(Ops.SINK, dtypes.void, (st_0,))
# convert the computation to a "linearized" format (print the format)
from tinygrad.engine.realize import get_kernel, CompiledRunner
kernel = get_kernel(Device[DEVICE].renderer, s).linearize()
# compile a program (and print the source)
fxn = CompiledRunner(kernel.to_program())
print(fxn.p.src)
# NOTE: fxn.clprg is the CPUProgram
# run the program
fxn.exec([out, a, b])
# check the data out
assert out.as_buffer().cast('I')[0] == 5
print("******** third, the LazyBuffer ***********")
from tinygrad.engine.realize import run_schedule
from tinygrad.engine.schedule import create_schedule_with_vars
# allocate some values + load in values
a = UOp.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE)
b = UOp.metaop(Ops.EMPTY, (1,), dtypes.int32, DEVICE)
a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
# describe the computation
out = a.alu(Ops.ADD, b)
# schedule the computation as a list of kernels
sched, _, becomes_map = create_schedule_with_vars(out.sink())
for si in sched: print(si.ast.op) # NOTE: the first two convert it to CPU
# NOTE: UOps are no longer mutable, the scheduler gives you a map to lookup which BUFFER the result was written to
out = becomes_map[out]
# DEBUGGING: print the compute ast
print(sched[-1].ast)
# NOTE: sched[-1].ast is the same as st_0 above
# run that schedule
run_schedule(sched)
# check the data out
assert out.is_realized and out.buffer.as_buffer().cast('I')[0] == 5
print("******** fourth, the Tensor ***********")
from tinygrad import Tensor
a = Tensor([2], dtype=dtypes.int32, device=DEVICE)
b = Tensor([3], dtype=dtypes.int32, device=DEVICE)
out = a + b
# check the data out
print(val:=out.item())
assert val == 5