openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

73 lines
3.2 KiB

from pathlib import Path
from extra.models.efficientnet import EfficientNet
from tinygrad.tensor import Tensor
from tinygrad.nn.state import get_state_dict, safe_save, safe_load, load_state_dict
from extra.export_model import export_model
from tinygrad.helpers import getenv, fetch
import ast
if __name__ == "__main__":
model = EfficientNet(0)
model.load_from_pretrained()
dirname = Path(__file__).parent
# exporting a model that's loaded from safetensors doesn't work without loading in from safetensors first
# loading the state dict from a safetensor file changes the generated kernels
if getenv("WEBGPU"):
safe_save(get_state_dict(model), (dirname / "net.safetensors").as_posix())
load_state_dict(model, safe_load(str(dirname / "net.safetensors")))
mode = "clang" if getenv("CPU", "") != "" else "webgpu" if getenv("WEBGPU", "") != "" else ""
prg, inp_sizes, out_sizes, state = export_model(model, mode, Tensor.randn(1,3,224,224))
if getenv("CPU", "") == "":
ext = "js" if getenv("WEBGPU", "") != "" else "json"
with open(dirname / f"net.{ext}", "w") as text_file:
text_file.write(prg)
else:
cprog = [prg]
# image library!
cprog += ["#define STB_IMAGE_IMPLEMENTATION", fetch("https://raw.githubusercontent.com/nothings/stb/master/stb_image.h").read_text().replace("half", "_half")]
# imagenet labels, move to datasets?
lbls = ast.literal_eval(fetch("https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt").read_text())
lbls = ['"'+lbls[i]+'"' for i in range(1000)]
inputs = "\n".join([f"float {inp}[{inp_size}];" for inp,inp_size in inp_sizes.items()])
outputs = "\n".join([f"float {out}[{out_size}];" for out,out_size in out_sizes.items()])
cprog.append(f"char *lbls[] = {{{','.join(lbls)}}};")
cprog.append(inputs)
cprog.append(outputs)
# buffers (empty + weights)
cprog.append("""
int main(int argc, char* argv[]) {
int DEBUG = getenv("DEBUG") != NULL ? atoi(getenv("DEBUG")) : 0;
int X=0, Y=0, chan=0;
stbi_uc *image = (argc > 1) ? stbi_load(argv[1], &X, &Y, &chan, 3) : stbi_load_from_file(stdin, &X, &Y, &chan, 3);
assert(image != NULL);
if (DEBUG) printf("loaded image %dx%d channels %d\\n", X, Y, chan);
assert(chan == 3);
// resize to input[1,3,224,224] and rescale
for (int y = 0; y < 224; y++) {
for (int x = 0; x < 224; x++) {
// get sample position
int tx = (x/224.)*X;
int ty = (y/224.)*Y;
for (int c = 0; c < 3; c++) {
input0[c*224*224 + y*224 + x] = (image[ty*X*chan + tx*chan + c] / 255.0 - 0.45) / 0.225;
}
}
}
net(input0, output0);
float best = -INFINITY;
int best_idx = -1;
for (int i = 0; i < 1000; i++) {
if (output0[i] > best) {
best = output0[i];
best_idx = i;
}
}
if (DEBUG) printf("category : %d (%s) with %f\\n", best_idx, lbls[best_idx], best);
else printf("%s\\n", lbls[best_idx]);
}""")
# CPU=1 python3 examples/compile_efficientnet.py | clang -O2 -lm -x c - -o recognize && DEBUG=1 time ./recognize docs/showcase/stable_diffusion_by_tinygrad.jpg
# category : 281 (tabby, tabby cat) with 9.452788
print('\n'.join(cprog))