openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

154 lines
6.8 KiB

import os, sys, pickle, time
import numpy as np
if "FLOAT16" not in os.environ: os.environ["FLOAT16"] = "1"
if "IMAGE" not in os.environ: os.environ["IMAGE"] = "2"
if "NOLOCALS" not in os.environ: os.environ["NOLOCALS"] = "1"
if "JIT_BATCH_SIZE" not in os.environ: os.environ["JIT_BATCH_SIZE"] = "0"
from tinygrad import fetch, Tensor, TinyJit, Context, GlobalCounters, Device
from tinygrad.helpers import DEBUG, getenv
from tinygrad.tensor import _from_np_dtype
from tinygrad.engine.realize import CompiledRunner
import onnx
from onnx.helper import tensor_dtype_to_np_dtype
from tinygrad.frontend.onnx import OnnxRunner
OPENPILOT_MODEL = sys.argv[1] if len(sys.argv) > 1 else "https://github.com/commaai/openpilot/raw/v0.9.7/selfdrive/modeld/models/supercombo.onnx"
OUTPUT = sys.argv[2] if len(sys.argv) > 2 else "/tmp/openpilot.pkl"
def compile(onnx_file):
onnx_model = onnx.load(onnx_file)
run_onnx = OnnxRunner(onnx_model)
print("loaded model")
input_shapes = {inp.name:tuple(x.dim_value for x in inp.type.tensor_type.shape.dim) for inp in onnx_model.graph.input}
input_types = {inp.name: tensor_dtype_to_np_dtype(inp.type.tensor_type.elem_type) for inp in onnx_model.graph.input}
# Float inputs and outputs to tinyjits for openpilot are always float32
input_types = {k:(np.float32 if v==np.float16 else v) for k,v in input_types.items()}
Tensor.manual_seed(100)
new_inputs = {k:Tensor.randn(*shp, dtype=_from_np_dtype(input_types[k])).mul(8).realize() for k,shp in sorted(input_shapes.items())}
new_inputs_numpy = {k:v.numpy() for k,v in new_inputs.items()}
print("created tensors")
run_onnx_jit = TinyJit(lambda **kwargs:
next(iter(run_onnx({k:v.to(Device.DEFAULT) for k,v in kwargs.items()}).values())).cast('float32'), prune=True)
for i in range(3):
GlobalCounters.reset()
print(f"run {i}")
inputs = {**{k:v.clone() for k,v in new_inputs.items() if 'img' in k},
**{k:Tensor(v, device="NPY").realize() for k,v in new_inputs_numpy.items() if 'img' not in k}}
with Context(DEBUG=max(DEBUG.value, 2 if i == 2 else 1)):
ret = run_onnx_jit(**inputs).numpy()
# copy i == 1 so use of JITBEAM is okay
if i == 1: test_val = np.copy(ret)
print(f"captured {len(run_onnx_jit.captured.jit_cache)} kernels")
np.testing.assert_equal(test_val, ret, "JIT run failed")
print("jit run validated")
# checks from compile2
kernel_count = 0
read_image_count = 0
gated_read_image_count = 0
for ei in run_onnx_jit.captured.jit_cache:
if isinstance(ei.prg, CompiledRunner):
kernel_count += 1
read_image_count += ei.prg.p.src.count("read_image")
gated_read_image_count += ei.prg.p.src.count("?read_image")
print(f"{kernel_count=}, {read_image_count=}, {gated_read_image_count=}")
if (allowed_kernel_count:=getenv("ALLOWED_KERNEL_COUNT", -1)) != -1:
assert kernel_count <= allowed_kernel_count, f"too many kernels! {kernel_count=}, {allowed_kernel_count=}"
if (allowed_read_image:=getenv("ALLOWED_READ_IMAGE", -1)) != -1:
assert read_image_count == allowed_read_image, f"different read_image! {read_image_count=}, {allowed_read_image=}"
if (allowed_gated_read_image:=getenv("ALLOWED_GATED_READ_IMAGE", -1)) != -1:
assert gated_read_image_count <= allowed_gated_read_image, f"too many gated read_image! {gated_read_image_count=}, {allowed_gated_read_image=}"
with open(OUTPUT, "wb") as f:
pickle.dump(run_onnx_jit, f)
mdl_sz = os.path.getsize(onnx_file)
pkl_sz = os.path.getsize(OUTPUT)
print(f"mdl size is {mdl_sz/1e6:.2f}M")
print(f"pkl size is {pkl_sz/1e6:.2f}M")
print("**** compile done ****")
return test_val
def test_vs_compile(run, new_inputs, test_val=None):
new_inputs_numpy = {k:v.numpy() for k,v in new_inputs.items()}
# create fake "from_blob" tensors for the inputs, and wrapped NPY tensors for the numpy inputs (these have the same underlying memory)
inputs = {**{k:v for k,v in new_inputs.items() if 'img' in k},
**{k:Tensor(v, device="NPY").realize() for k,v in new_inputs_numpy.items() if 'img' not in k}}
# run 20 times
for _ in range(20):
st = time.perf_counter()
out = run(**inputs)
mt = time.perf_counter()
val = out.numpy()
et = time.perf_counter()
print(f"enqueue {(mt-st)*1e3:6.2f} ms -- total run {(et-st)*1e3:6.2f} ms")
print(out, val.shape, val.dtype)
if test_val is not None: np.testing.assert_equal(test_val, val)
print("**** test done ****")
# test that changing the numpy changes the model outputs
if any([x.device == 'NPY' for x in inputs.values()]):
for v in new_inputs_numpy.values(): v *= 2
out = run(**inputs)
changed_val = out.numpy()
np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, val, changed_val)
return val
def test_vs_onnx(new_inputs, test_val, onnx_file, ort=False):
new_inputs_numpy = {k:v.numpy() for k,v in new_inputs.items()}
onnx_model = onnx.load(onnx_file)
timings = []
if ort:
# test with onnxruntime
import onnxruntime as ort
onnx_session = ort.InferenceSession(onnx_file)
for _ in range(1 if test_val is not None else 5):
st = time.perf_counter()
onnx_output = onnx_session.run([onnx_model.graph.output[0].name], {k:v.astype(np.float16) for k,v in new_inputs_numpy.items()})
timings.append(time.perf_counter() - st)
new_torch_out = onnx_output[0]
else:
# test with torch
import torch
from onnx2torch import convert
inputs = {k.name:new_inputs_numpy[k.name] for k in onnx_model.graph.input}
torch_model = convert(onnx_model).float()
with torch.no_grad():
for _ in range(1 if test_val is not None else 5):
st = time.perf_counter()
torch_out = torch_model(*[torch.tensor(x) for x in inputs.values()])
timings.append(time.perf_counter() - st)
new_torch_out = torch_out.numpy()
if test_val is not None:
np.testing.assert_allclose(new_torch_out.reshape(test_val.shape), test_val, atol=1e-4, rtol=1e-2)
print("test vs onnx passed")
return timings
if __name__ == "__main__":
onnx_file = fetch(OPENPILOT_MODEL)
test_val = compile(onnx_file) if not getenv("RUN") else None
with open(OUTPUT, "rb") as f: pickle_loaded = pickle.load(f)
# same randomness as compile
Tensor.manual_seed(100)
new_inputs = {nm:Tensor.randn(*st.shape, dtype=dtype).mul(8).realize() for nm, (st, _, dtype, _) in
sorted(zip(pickle_loaded.captured.expected_names, pickle_loaded.captured.expected_st_vars_dtype_device))}
test_val = test_vs_compile(pickle_loaded, new_inputs, test_val)
if getenv("BENCHMARK"):
for be in ["torch", "ort"]:
try:
timings = test_vs_onnx(new_inputs, None, onnx_file, be=="ort")
print(f"timing {be}: {min(timings)*1000:.2f} ms")
except Exception as e:
print(f"{be} fail with {e}")
if not getenv("FLOAT16"): test_vs_onnx(new_inputs, test_val, onnx_file, getenv("ORT"))