openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

36 lines
1.4 KiB

# https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
import torch
import torch._dynamo
from extra.torch_backend.backend import unwrap, wrap
from torch._dynamo.backends.registry import register_backend
from torch._functorch.aot_autograd import aot_module_simplified
from tinygrad import Tensor, TinyJit
@register_backend
def tiny(gm:torch.fx.GraphModule, sample_inputs):
def my_compiler(gm:torch.fx.GraphModule, sample_inputs):
# TODO: the jit should capture the graph directly, not need three runs. this is a planned tinygrad refactor after becomes_map
@TinyJit
def tiny_function(*args:Tensor):
outs = gm(*[wrap(x) for x in args])
for x in outs: unwrap(x).realize()
return outs
# TODO: this should be able to pass in .tiny() Tensors, not need to convert them. it tries to access Storage if you pass in.
def torch_function(*args:torch.Tensor): return tiny_function(*[unwrap(x.tiny()) for x in args])
return torch_function
return aot_module_simplified(gm, sample_inputs, decompositions={}, fw_compiler=my_compiler)
if __name__ == "__main__":
def foo(x, y):
a = torch.sin(x)
b = torch.cos(y)
return a + b
print("calling compile")
opt_foo1 = torch.compile(foo, backend="tiny")
print("compiled")
for i in range(5):
out = opt_foo1(torch.randn(10, 10), torch.randn(10, 10))
print(out.device)