openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

48 lines
1.7 KiB

import unittest
from tinygrad import Tensor, Device, Variable
from examples.gpt2 import Transformer
from tinygrad.nn.state import get_state_dict
class TestMethodCache(unittest.TestCase):
def setUp(self):
self.backup_compiler = Device[Device.DEFAULT].compiler
def tearDown(self):
Device[Device.DEFAULT].compiler = self.backup_compiler
def test_simple_methodcache(self):
a = Tensor([1])
b = Tensor([2])
c = Tensor([3])
d = Tensor([4])
(a+b).realize()
Device[Device.DEFAULT].compiler = None
(c+d).realize()
def test_nested_methodcache(self):
a,b,c,d = Tensor([1]), Tensor([2]), Tensor([3]), Tensor([4])
((a+b)+(a+b)).realize()
Device[Device.DEFAULT].compiler = None
((c+d)+(c+d)).realize()
def test_nested_methodcache_swap(self):
a,b,c,d = Tensor([1]), Tensor([2]), Tensor([3]), Tensor([4])
((a+b)+(c+d)).realize()
Device[Device.DEFAULT].compiler = None
((c+d)+(a+b)).realize()
@unittest.skip("incorrect use of transformer")
def test_small_transformer(self):
args_tiny = {"dim": 16, "n_heads": 8, "n_layers": 8, "norm_eps": 1e-05, "vocab_size": 10}
model = Transformer(**args_tiny)
for v in get_state_dict(model).values(): v.assign(Tensor.empty(*v.shape, dtype=v.dtype).realize())
# NOTE: you have to do this twice due to the k-v cache
for i in range(3): model(Tensor([[1,2,3,4]]), Variable("start_pos", 0, 10).bind(i)).realize()
for i in range(3): model(Tensor([[1,2,3,4]]), Variable("start_pos", 0, 10).bind(i)).realize()
Device[Device.DEFAULT].compiler = None
for i in range(3): model(Tensor([[1,2,3,4]]), Variable("start_pos", 0, 10).bind(i)).realize()
if __name__ == '__main__':
unittest.main()