openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

73 lines
4.5 KiB

from typing import cast, Iterator
import math, functools, dataclasses
from tinygrad.dtype import dtypes, sum_acc_dtype
from tinygrad.ops import UOp, PatternMatcher, UPat, Ops, all_metadata
from tinygrad.helpers import argsort
def reduce_gradient(ctx:UOp, ret:UOp):
if ret.arg[0] == Ops.ADD: return (ctx.expand(ret.src[0].shape),)
if ret.arg[0] == Ops.MAX:
max_is_1s = ret.src[0].ne(ret.expand(ret.src[0].shape)).ne(ret.src[0].const_like(1).cast(dtypes.bool)).cast(ctx.dtype)
div = max_is_1s.r(Ops.ADD, ret.arg[1]).expand(ret.src[0].shape)
return ((max_is_1s/div) * ctx.expand(ret.src[0].shape),)
if ret.arg[0] == Ops.MUL: return ((ctx * ret).expand(ret.src[0].shape) / ret.src[0],)
# ctx is grad_output
pm_gradient = PatternMatcher([
(UPat(Ops.CAST, name="ret"), lambda ctx, ret: (ctx.cast(ret.src[0].dtype),)),
(UPat(Ops.RECIP, name="ret"), lambda ctx, ret: (-ctx * ret * ret,)),
(UPat(Ops.SIN, name="ret"), lambda ctx, ret: ((math.pi/2 - ret.src[0]).sin() * ctx,)),
(UPat(Ops.LOG2, name="ret"), lambda ctx, ret: (ctx / (ret.src[0] * math.log(2)),)),
(UPat(Ops.EXP2, name="ret"), lambda ctx, ret: (ret * ctx * math.log(2),)),
(UPat(Ops.SQRT, name="ret"), lambda ctx, ret: (ctx / (ret*2),)),
(UPat((Ops.CMPLT, Ops.CMPNE)), lambda: (None, None)),
(UPat(Ops.ADD), lambda ctx: (ctx, ctx)),
(UPat(Ops.POW, name="ret"), lambda ctx, ret:
(ctx*(ret.src[0].eq(0) & ret.src[1].eq(0)).where(ret.src[1], ret.src[1]*ret.src[0].pow(ret.src[1]-1)),
ctx*ret.src[0].eq(0).where((ret.src[1]<0).where(ret.const_like(-math.inf), ret.const_like(0)), ret*ret.src[0].log2()*math.log(2.0)))),
(UPat(Ops.MAX, name="ret"), lambda ctx, ret: ((ret.src[0]>ret.src[1]).where(ctx, (ret.src[0]!=ret.src[1]).where(ctx.const_like(0), ctx * 0.5)),
(ret.src[0]<ret.src[1]).where(ctx, (ret.src[0]!=ret.src[1]).where(ctx.const_like(0), ctx * 0.5)))),
(UPat(Ops.MUL, name="ret"), lambda ctx, ret: (ret.src[1]*ctx, ret.src[0]*ctx)),
(UPat(Ops.WHERE, name="ret"), lambda ctx, ret: (None, ret.src[0].where(ctx, ctx.const_like(0)), ret.src[0].where(ctx.const_like(0), ctx))),
(UPat(Ops.REDUCE_AXIS, name="ret"), reduce_gradient),
(UPat(Ops.CONTIGUOUS), lambda ctx: (ctx,)),
(UPat(Ops.CONTIGUOUS_BACKWARD), lambda ctx: (ctx.contiguous(),)),
(UPat(Ops.RESHAPE, name="ret"), lambda ctx, ret: (ctx.reshape(ret.src[0].shape),)),
(UPat(Ops.PERMUTE, name="ret"), lambda ctx, ret: (ctx.permute(argsort(ret.arg)),)),
(UPat(Ops.PAD, name="ret"), lambda ctx, ret: (ctx.shrink(tuple([(p[0], s+p[0]) for s,p in zip(ret.src[0].shape, ret.arg)])),)),
(UPat(Ops.SHRINK, name="ret"), lambda ctx, ret: (ctx.pad(tuple([(p[0], s-p[1]) for s,p in zip(ret.src[0].shape, ret.arg)])),)),
(UPat(Ops.FLIP, name="ret"), lambda ctx, ret: (ctx.flip(ret.arg),)),
# TODO: this cast can be removed by putting the casts around the EXPAND
(UPat(Ops.EXPAND, name="ret"), lambda ctx, ret:
(ctx.cast(sum_acc_dtype(ctx.dtype)).r(Ops.ADD, tuple(i for i,(si,so) in enumerate(zip(ret.src[0].shape, ret.arg)) if si!=so)).cast(ctx.dtype),)),
(UPat(Ops.MULTI, name="ret"), lambda ctx, ret: ctx.shard(ret.device, ret.axis).src),
# there's no gradient for bitcast
(UPat(Ops.BITCAST), lambda ctx: (None,)),
])
# copied from tensor.py, get relevant toposort of gradients
def _deepwalk(root:UOp, targets:set[UOp]) -> list[UOp]:
@functools.lru_cache(None)
def is_in_target_path(x:UOp) -> bool: return any(u in targets or is_in_target_path(u) for u in x.src)
def _walk(node:UOp, visited:set[UOp]) -> Iterator[UOp]:
visited.add(node)
if node.op is Ops.DETACH: return
if is_in_target_path(node):
for i in node.src:
if i not in visited: yield from _walk(i, visited)
yield node
return list(_walk(root, set()))
def compute_gradient(root:UOp, root_grad:UOp, targets:set[UOp]) -> dict[UOp, UOp]:
grads = {root: root_grad}
for t0 in reversed(_deepwalk(root, targets)):
if t0 not in grads: continue
lgrads: tuple[UOp|None, ...]|None = cast(tuple[UOp, ...]|None, pm_gradient.rewrite(t0, ctx=grads[t0]))
if lgrads is None: raise RuntimeError(f"failed to compute gradient for {t0.op}\n\nin {str(t0)[0:1000]}...")
assert len(lgrads) == len(t0.src), f"got {len(lgrads)} gradient, expected {len(t0.src)}"
for k,v in zip(t0.src, lgrads):
if v is None: continue
if k in grads: grads[k] = grads[k] + v
else: grads[k] = v
if (forward_metadata:=all_metadata.get(t0)) is not None: all_metadata[v] = dataclasses.replace(forward_metadata, backward=True)
return grads