You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
19 KiB
457 lines
19 KiB
#include "selfdrive/modeld/models/driving.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
#include <eigen3/Eigen/Dense>
|
|
|
|
#include "common/clutil.h"
|
|
#include "common/params.h"
|
|
#include "common/timing.h"
|
|
#include "common/swaglog.h"
|
|
|
|
constexpr float FCW_THRESHOLD_5MS2_HIGH = 0.15;
|
|
constexpr float FCW_THRESHOLD_5MS2_LOW = 0.05;
|
|
constexpr float FCW_THRESHOLD_3MS2 = 0.7;
|
|
|
|
std::array<float, 5> prev_brake_5ms2_probs = {0,0,0,0,0};
|
|
std::array<float, 3> prev_brake_3ms2_probs = {0,0,0};
|
|
|
|
// #define DUMP_YUV
|
|
|
|
void model_init(ModelState* s, cl_device_id device_id, cl_context context) {
|
|
s->frame = new ModelFrame(device_id, context);
|
|
s->wide_frame = new ModelFrame(device_id, context);
|
|
|
|
#ifdef USE_THNEED
|
|
s->m = std::make_unique<ThneedModel>("models/supercombo.thneed",
|
|
#elif USE_ONNX_MODEL
|
|
s->m = std::make_unique<ONNXModel>("models/supercombo.onnx",
|
|
#else
|
|
s->m = std::make_unique<SNPEModel>("models/supercombo.dlc",
|
|
#endif
|
|
&s->output[0], NET_OUTPUT_SIZE, USE_GPU_RUNTIME, false, context);
|
|
|
|
s->m->addInput("input_imgs", NULL, 0);
|
|
s->m->addInput("big_input_imgs", NULL, 0);
|
|
|
|
// TODO: the input is important here, still need to fix this
|
|
#ifdef DESIRE
|
|
s->m->addInput("desire_pulse", s->pulse_desire, DESIRE_LEN*(HISTORY_BUFFER_LEN+1));
|
|
#endif
|
|
|
|
#ifdef TRAFFIC_CONVENTION
|
|
s->m->addInput("traffic_convention", s->traffic_convention, TRAFFIC_CONVENTION_LEN);
|
|
#endif
|
|
|
|
#ifdef DRIVING_STYLE
|
|
s->m->addInput("driving_style", s->driving_style, DRIVING_STYLE_LEN);
|
|
#endif
|
|
|
|
#ifdef NAV
|
|
s->m->addInput("nav_features", s->nav_features, NAV_FEATURE_LEN);
|
|
#endif
|
|
|
|
#ifdef TEMPORAL
|
|
s->m->addInput("feature_buffer", &s->feature_buffer[0], TEMPORAL_SIZE);
|
|
#endif
|
|
|
|
}
|
|
|
|
ModelOutput* model_eval_frame(ModelState* s, VisionBuf* buf, VisionBuf* wbuf,
|
|
const mat3 &transform, const mat3 &transform_wide, float *desire_in, bool is_rhd, float *driving_style, float *nav_features, bool prepare_only) {
|
|
#ifdef DESIRE
|
|
std::memmove(&s->pulse_desire[0], &s->pulse_desire[DESIRE_LEN], sizeof(float) * DESIRE_LEN*HISTORY_BUFFER_LEN);
|
|
if (desire_in != NULL) {
|
|
for (int i = 1; i < DESIRE_LEN; i++) {
|
|
// Model decides when action is completed
|
|
// so desire input is just a pulse triggered on rising edge
|
|
if (desire_in[i] - s->prev_desire[i] > .99) {
|
|
s->pulse_desire[DESIRE_LEN*HISTORY_BUFFER_LEN+i] = desire_in[i];
|
|
} else {
|
|
s->pulse_desire[DESIRE_LEN*HISTORY_BUFFER_LEN+i] = 0.0;
|
|
}
|
|
s->prev_desire[i] = desire_in[i];
|
|
}
|
|
}
|
|
LOGT("Desire enqueued");
|
|
#endif
|
|
|
|
#ifdef NAV
|
|
std::memcpy(s->nav_features, nav_features, sizeof(float)*NAV_FEATURE_LEN);
|
|
#endif
|
|
|
|
#ifdef DRIVING_STYLE
|
|
std::memcpy(s->driving_style, driving_style, sizeof(float)*DRIVING_STYLE_LEN);
|
|
#endif
|
|
|
|
int rhd_idx = is_rhd;
|
|
s->traffic_convention[rhd_idx] = 1.0;
|
|
s->traffic_convention[1-rhd_idx] = 0.0;
|
|
|
|
// if getInputBuf is not NULL, net_input_buf will be
|
|
auto net_input_buf = s->frame->prepare(buf->buf_cl, buf->width, buf->height, buf->stride, buf->uv_offset, transform, static_cast<cl_mem*>(s->m->getCLBuffer("input_imgs")));
|
|
s->m->setInputBuffer("input_imgs", net_input_buf, s->frame->buf_size);
|
|
LOGT("Image added");
|
|
|
|
if (wbuf != nullptr) {
|
|
auto net_extra_buf = s->wide_frame->prepare(wbuf->buf_cl, wbuf->width, wbuf->height, wbuf->stride, wbuf->uv_offset, transform_wide, static_cast<cl_mem*>(s->m->getCLBuffer("big_input_imgs")));
|
|
s->m->setInputBuffer("big_input_imgs", net_extra_buf, s->wide_frame->buf_size);
|
|
LOGT("Extra image added");
|
|
}
|
|
|
|
if (prepare_only) {
|
|
return nullptr;
|
|
}
|
|
|
|
s->m->execute();
|
|
LOGT("Execution finished");
|
|
|
|
#ifdef TEMPORAL
|
|
std::memmove(&s->feature_buffer[0], &s->feature_buffer[FEATURE_LEN], sizeof(float) * FEATURE_LEN*(HISTORY_BUFFER_LEN-1));
|
|
std::memcpy(&s->feature_buffer[FEATURE_LEN*(HISTORY_BUFFER_LEN-1)], &s->output[OUTPUT_SIZE], sizeof(float) * FEATURE_LEN);
|
|
LOGT("Features enqueued");
|
|
#endif
|
|
|
|
return (ModelOutput*)&s->output;
|
|
}
|
|
|
|
void model_free(ModelState* s) {
|
|
delete s->frame;
|
|
delete s->wide_frame;
|
|
}
|
|
|
|
void fill_lead(cereal::ModelDataV2::LeadDataV3::Builder lead, const ModelOutputLeads &leads, int t_idx, float prob_t) {
|
|
std::array<float, LEAD_TRAJ_LEN> lead_t = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
|
|
const auto &best_prediction = leads.get_best_prediction(t_idx);
|
|
lead.setProb(sigmoid(leads.prob[t_idx]));
|
|
lead.setProbTime(prob_t);
|
|
std::array<float, LEAD_TRAJ_LEN> lead_x, lead_y, lead_v, lead_a;
|
|
std::array<float, LEAD_TRAJ_LEN> lead_x_std, lead_y_std, lead_v_std, lead_a_std;
|
|
for (int i=0; i<LEAD_TRAJ_LEN; i++) {
|
|
lead_x[i] = best_prediction.mean[i].x;
|
|
lead_y[i] = best_prediction.mean[i].y;
|
|
lead_v[i] = best_prediction.mean[i].velocity;
|
|
lead_a[i] = best_prediction.mean[i].acceleration;
|
|
lead_x_std[i] = exp(best_prediction.std[i].x);
|
|
lead_y_std[i] = exp(best_prediction.std[i].y);
|
|
lead_v_std[i] = exp(best_prediction.std[i].velocity);
|
|
lead_a_std[i] = exp(best_prediction.std[i].acceleration);
|
|
}
|
|
lead.setT(to_kj_array_ptr(lead_t));
|
|
lead.setX(to_kj_array_ptr(lead_x));
|
|
lead.setY(to_kj_array_ptr(lead_y));
|
|
lead.setV(to_kj_array_ptr(lead_v));
|
|
lead.setA(to_kj_array_ptr(lead_a));
|
|
lead.setXStd(to_kj_array_ptr(lead_x_std));
|
|
lead.setYStd(to_kj_array_ptr(lead_y_std));
|
|
lead.setVStd(to_kj_array_ptr(lead_v_std));
|
|
lead.setAStd(to_kj_array_ptr(lead_a_std));
|
|
}
|
|
|
|
void fill_meta(cereal::ModelDataV2::MetaData::Builder meta, const ModelOutputMeta &meta_data) {
|
|
std::array<float, DESIRE_LEN> desire_state_softmax;
|
|
softmax(meta_data.desire_state_prob.array.data(), desire_state_softmax.data(), DESIRE_LEN);
|
|
|
|
std::array<float, DESIRE_PRED_LEN * DESIRE_LEN> desire_pred_softmax;
|
|
for (int i=0; i<DESIRE_PRED_LEN; i++) {
|
|
softmax(meta_data.desire_pred_prob[i].array.data(), desire_pred_softmax.data() + (i * DESIRE_LEN), DESIRE_LEN);
|
|
}
|
|
|
|
std::array<float, DISENGAGE_LEN> lat_long_t = {2,4,6,8,10};
|
|
std::array<float, DISENGAGE_LEN> gas_disengage_sigmoid, brake_disengage_sigmoid, steer_override_sigmoid,
|
|
brake_3ms2_sigmoid, brake_4ms2_sigmoid, brake_5ms2_sigmoid;
|
|
for (int i=0; i<DISENGAGE_LEN; i++) {
|
|
gas_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_disengage);
|
|
brake_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_disengage);
|
|
steer_override_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].steer_override);
|
|
brake_3ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_3ms2);
|
|
brake_4ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_4ms2);
|
|
brake_5ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_5ms2);
|
|
//gas_pressed_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_pressed);
|
|
}
|
|
|
|
std::memmove(prev_brake_5ms2_probs.data(), &prev_brake_5ms2_probs[1], 4*sizeof(float));
|
|
std::memmove(prev_brake_3ms2_probs.data(), &prev_brake_3ms2_probs[1], 2*sizeof(float));
|
|
prev_brake_5ms2_probs[4] = brake_5ms2_sigmoid[0];
|
|
prev_brake_3ms2_probs[2] = brake_3ms2_sigmoid[0];
|
|
|
|
bool above_fcw_threshold = true;
|
|
for (int i=0; i<prev_brake_5ms2_probs.size(); i++) {
|
|
float threshold = i < 2 ? FCW_THRESHOLD_5MS2_LOW : FCW_THRESHOLD_5MS2_HIGH;
|
|
above_fcw_threshold = above_fcw_threshold && prev_brake_5ms2_probs[i] > threshold;
|
|
}
|
|
for (int i=0; i<prev_brake_3ms2_probs.size(); i++) {
|
|
above_fcw_threshold = above_fcw_threshold && prev_brake_3ms2_probs[i] > FCW_THRESHOLD_3MS2;
|
|
}
|
|
|
|
auto disengage = meta.initDisengagePredictions();
|
|
disengage.setT(to_kj_array_ptr(lat_long_t));
|
|
disengage.setGasDisengageProbs(to_kj_array_ptr(gas_disengage_sigmoid));
|
|
disengage.setBrakeDisengageProbs(to_kj_array_ptr(brake_disengage_sigmoid));
|
|
disengage.setSteerOverrideProbs(to_kj_array_ptr(steer_override_sigmoid));
|
|
disengage.setBrake3MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_3ms2_sigmoid));
|
|
disengage.setBrake4MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_4ms2_sigmoid));
|
|
disengage.setBrake5MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_5ms2_sigmoid));
|
|
|
|
meta.setEngagedProb(sigmoid(meta_data.engaged_prob));
|
|
meta.setDesirePrediction(to_kj_array_ptr(desire_pred_softmax));
|
|
meta.setDesireState(to_kj_array_ptr(desire_state_softmax));
|
|
meta.setHardBrakePredicted(above_fcw_threshold);
|
|
}
|
|
|
|
void fill_confidence(ModelState* s, cereal::ModelDataV2::Builder &framed) {
|
|
if (framed.getFrameId() % (2*MODEL_FREQ) == 0) {
|
|
// update every 2s to match predictions interval
|
|
auto dbps = framed.getMeta().getDisengagePredictions().getBrakeDisengageProbs();
|
|
auto dgps = framed.getMeta().getDisengagePredictions().getGasDisengageProbs();
|
|
auto dsps = framed.getMeta().getDisengagePredictions().getSteerOverrideProbs();
|
|
|
|
float any_dp[DISENGAGE_LEN];
|
|
float dp_ind[DISENGAGE_LEN];
|
|
|
|
for (int i = 0; i < DISENGAGE_LEN; i++) {
|
|
any_dp[i] = 1 - ((1-dbps[i])*(1-dgps[i])*(1-dsps[i])); // any disengage prob
|
|
}
|
|
|
|
dp_ind[0] = any_dp[0];
|
|
for (int i = 0; i < DISENGAGE_LEN-1; i++) {
|
|
dp_ind[i+1] = (any_dp[i+1] - any_dp[i]) / (1 - any_dp[i]); // independent disengage prob for each 2s slice
|
|
}
|
|
|
|
// rolling buf for 2, 4, 6, 8, 10s
|
|
std::memmove(&s->disengage_buffer[0], &s->disengage_buffer[DISENGAGE_LEN], sizeof(float) * DISENGAGE_LEN * (DISENGAGE_LEN-1));
|
|
std::memcpy(&s->disengage_buffer[DISENGAGE_LEN * (DISENGAGE_LEN-1)], &dp_ind[0], sizeof(float) * DISENGAGE_LEN);
|
|
}
|
|
|
|
float score = 0;
|
|
for (int i = 0; i < DISENGAGE_LEN; i++) {
|
|
score += s->disengage_buffer[i*DISENGAGE_LEN+DISENGAGE_LEN-1-i] / DISENGAGE_LEN;
|
|
}
|
|
|
|
if (score < RYG_GREEN) {
|
|
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::GREEN);
|
|
} else if (score < RYG_YELLOW) {
|
|
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::YELLOW);
|
|
} else {
|
|
framed.setConfidence(cereal::ModelDataV2::ConfidenceClass::RED);
|
|
}
|
|
}
|
|
|
|
template<size_t size>
|
|
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
|
|
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z) {
|
|
xyzt.setT(to_kj_array_ptr(t));
|
|
xyzt.setX(to_kj_array_ptr(x));
|
|
xyzt.setY(to_kj_array_ptr(y));
|
|
xyzt.setZ(to_kj_array_ptr(z));
|
|
}
|
|
|
|
template<size_t size>
|
|
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
|
|
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z,
|
|
const std::array<float, size> &x_std, const std::array<float, size> &y_std, const std::array<float, size> &z_std) {
|
|
fill_xyzt(xyzt, t, x, y, z);
|
|
xyzt.setXStd(to_kj_array_ptr(x_std));
|
|
xyzt.setYStd(to_kj_array_ptr(y_std));
|
|
xyzt.setZStd(to_kj_array_ptr(z_std));
|
|
}
|
|
|
|
void fill_plan(cereal::ModelDataV2::Builder &framed, const ModelOutputPlanPrediction &plan) {
|
|
std::array<float, TRAJECTORY_SIZE> pos_x, pos_y, pos_z;
|
|
std::array<float, TRAJECTORY_SIZE> pos_x_std, pos_y_std, pos_z_std;
|
|
std::array<float, TRAJECTORY_SIZE> vel_x, vel_y, vel_z;
|
|
std::array<float, TRAJECTORY_SIZE> rot_x, rot_y, rot_z;
|
|
std::array<float, TRAJECTORY_SIZE> acc_x, acc_y, acc_z;
|
|
std::array<float, TRAJECTORY_SIZE> rot_rate_x, rot_rate_y, rot_rate_z;
|
|
|
|
for(int i=0; i<TRAJECTORY_SIZE; i++) {
|
|
pos_x[i] = plan.mean[i].position.x;
|
|
pos_y[i] = plan.mean[i].position.y;
|
|
pos_z[i] = plan.mean[i].position.z;
|
|
pos_x_std[i] = exp(plan.std[i].position.x);
|
|
pos_y_std[i] = exp(plan.std[i].position.y);
|
|
pos_z_std[i] = exp(plan.std[i].position.z);
|
|
vel_x[i] = plan.mean[i].velocity.x;
|
|
vel_y[i] = plan.mean[i].velocity.y;
|
|
vel_z[i] = plan.mean[i].velocity.z;
|
|
acc_x[i] = plan.mean[i].acceleration.x;
|
|
acc_y[i] = plan.mean[i].acceleration.y;
|
|
acc_z[i] = plan.mean[i].acceleration.z;
|
|
rot_x[i] = plan.mean[i].rotation.x;
|
|
rot_y[i] = plan.mean[i].rotation.y;
|
|
rot_z[i] = plan.mean[i].rotation.z;
|
|
rot_rate_x[i] = plan.mean[i].rotation_rate.x;
|
|
rot_rate_y[i] = plan.mean[i].rotation_rate.y;
|
|
rot_rate_z[i] = plan.mean[i].rotation_rate.z;
|
|
}
|
|
|
|
fill_xyzt(framed.initPosition(), T_IDXS_FLOAT, pos_x, pos_y, pos_z, pos_x_std, pos_y_std, pos_z_std);
|
|
fill_xyzt(framed.initVelocity(), T_IDXS_FLOAT, vel_x, vel_y, vel_z);
|
|
fill_xyzt(framed.initAcceleration(), T_IDXS_FLOAT, acc_x, acc_y, acc_z);
|
|
fill_xyzt(framed.initOrientation(), T_IDXS_FLOAT, rot_x, rot_y, rot_z);
|
|
fill_xyzt(framed.initOrientationRate(), T_IDXS_FLOAT, rot_rate_x, rot_rate_y, rot_rate_z);
|
|
}
|
|
|
|
void fill_lane_lines(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
|
|
const ModelOutputLaneLines &lanes) {
|
|
std::array<float, TRAJECTORY_SIZE> left_far_y, left_far_z;
|
|
std::array<float, TRAJECTORY_SIZE> left_near_y, left_near_z;
|
|
std::array<float, TRAJECTORY_SIZE> right_near_y, right_near_z;
|
|
std::array<float, TRAJECTORY_SIZE> right_far_y, right_far_z;
|
|
for (int j=0; j<TRAJECTORY_SIZE; j++) {
|
|
left_far_y[j] = lanes.mean.left_far[j].y;
|
|
left_far_z[j] = lanes.mean.left_far[j].z;
|
|
left_near_y[j] = lanes.mean.left_near[j].y;
|
|
left_near_z[j] = lanes.mean.left_near[j].z;
|
|
right_near_y[j] = lanes.mean.right_near[j].y;
|
|
right_near_z[j] = lanes.mean.right_near[j].z;
|
|
right_far_y[j] = lanes.mean.right_far[j].y;
|
|
right_far_z[j] = lanes.mean.right_far[j].z;
|
|
}
|
|
|
|
auto lane_lines = framed.initLaneLines(4);
|
|
fill_xyzt(lane_lines[0], plan_t, X_IDXS_FLOAT, left_far_y, left_far_z);
|
|
fill_xyzt(lane_lines[1], plan_t, X_IDXS_FLOAT, left_near_y, left_near_z);
|
|
fill_xyzt(lane_lines[2], plan_t, X_IDXS_FLOAT, right_near_y, right_near_z);
|
|
fill_xyzt(lane_lines[3], plan_t, X_IDXS_FLOAT, right_far_y, right_far_z);
|
|
|
|
framed.setLaneLineStds({
|
|
exp(lanes.std.left_far[0].y),
|
|
exp(lanes.std.left_near[0].y),
|
|
exp(lanes.std.right_near[0].y),
|
|
exp(lanes.std.right_far[0].y),
|
|
});
|
|
|
|
framed.setLaneLineProbs({
|
|
sigmoid(lanes.prob.left_far.val),
|
|
sigmoid(lanes.prob.left_near.val),
|
|
sigmoid(lanes.prob.right_near.val),
|
|
sigmoid(lanes.prob.right_far.val),
|
|
});
|
|
}
|
|
|
|
void fill_road_edges(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
|
|
const ModelOutputRoadEdges &edges) {
|
|
std::array<float, TRAJECTORY_SIZE> left_y, left_z;
|
|
std::array<float, TRAJECTORY_SIZE> right_y, right_z;
|
|
for (int j=0; j<TRAJECTORY_SIZE; j++) {
|
|
left_y[j] = edges.mean.left[j].y;
|
|
left_z[j] = edges.mean.left[j].z;
|
|
right_y[j] = edges.mean.right[j].y;
|
|
right_z[j] = edges.mean.right[j].z;
|
|
}
|
|
|
|
auto road_edges = framed.initRoadEdges(2);
|
|
fill_xyzt(road_edges[0], plan_t, X_IDXS_FLOAT, left_y, left_z);
|
|
fill_xyzt(road_edges[1], plan_t, X_IDXS_FLOAT, right_y, right_z);
|
|
|
|
framed.setRoadEdgeStds({
|
|
exp(edges.std.left[0].y),
|
|
exp(edges.std.right[0].y),
|
|
});
|
|
}
|
|
|
|
void fill_model(ModelState* s, cereal::ModelDataV2::Builder &framed, const ModelOutput &net_outputs) {
|
|
const auto &best_plan = net_outputs.plans.get_best_prediction();
|
|
std::array<float, TRAJECTORY_SIZE> plan_t;
|
|
std::fill_n(plan_t.data(), plan_t.size(), NAN);
|
|
plan_t[0] = 0.0;
|
|
for (int xidx=1, tidx=0; xidx<TRAJECTORY_SIZE; xidx++) {
|
|
// increment tidx until we find an element that's further away than the current xidx
|
|
for (int next_tid = tidx + 1; next_tid < TRAJECTORY_SIZE && best_plan.mean[next_tid].position.x < X_IDXS[xidx]; next_tid++) {
|
|
tidx++;
|
|
}
|
|
if (tidx == TRAJECTORY_SIZE - 1) {
|
|
// if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
|
|
plan_t[xidx] = T_IDXS[TRAJECTORY_SIZE - 1];
|
|
break;
|
|
}
|
|
|
|
// interpolate to find `t` for the current xidx
|
|
float current_x_val = best_plan.mean[tidx].position.x;
|
|
float next_x_val = best_plan.mean[tidx+1].position.x;
|
|
float p = (X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val);
|
|
plan_t[xidx] = p * T_IDXS[tidx+1] + (1 - p) * T_IDXS[tidx];
|
|
}
|
|
|
|
fill_plan(framed, best_plan);
|
|
fill_lane_lines(framed, plan_t, net_outputs.lane_lines);
|
|
fill_road_edges(framed, plan_t, net_outputs.road_edges);
|
|
|
|
// meta
|
|
fill_meta(framed.initMeta(), net_outputs.meta);
|
|
|
|
// confidence
|
|
fill_confidence(s, framed);
|
|
|
|
// leads
|
|
auto leads = framed.initLeadsV3(LEAD_MHP_SELECTION);
|
|
std::array<float, LEAD_MHP_SELECTION> t_offsets = {0.0, 2.0, 4.0};
|
|
for (int i=0; i<LEAD_MHP_SELECTION; i++) {
|
|
fill_lead(leads[i], net_outputs.leads, i, t_offsets[i]);
|
|
}
|
|
|
|
// temporal pose
|
|
const auto &v_mean = net_outputs.temporal_pose.velocity_mean;
|
|
const auto &r_mean = net_outputs.temporal_pose.rotation_mean;
|
|
const auto &v_std = net_outputs.temporal_pose.velocity_std;
|
|
const auto &r_std = net_outputs.temporal_pose.rotation_std;
|
|
auto temporal_pose = framed.initTemporalPose();
|
|
temporal_pose.setTrans({v_mean.x, v_mean.y, v_mean.z});
|
|
temporal_pose.setRot({r_mean.x, r_mean.y, r_mean.z});
|
|
temporal_pose.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
|
|
temporal_pose.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
|
|
}
|
|
|
|
void model_publish(ModelState* s, PubMaster &pm, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
|
|
const ModelOutput &net_outputs, uint64_t timestamp_eof, uint64_t timestamp_llk,
|
|
float model_execution_time, const bool nav_enabled, const bool valid) {
|
|
const uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0;
|
|
MessageBuilder msg;
|
|
auto framed = msg.initEvent(valid).initModelV2();
|
|
framed.setFrameId(vipc_frame_id);
|
|
framed.setFrameIdExtra(vipc_frame_id_extra);
|
|
framed.setFrameAge(frame_age);
|
|
framed.setFrameDropPerc(frame_drop * 100);
|
|
framed.setTimestampEof(timestamp_eof);
|
|
framed.setLocationMonoTime(timestamp_llk);
|
|
framed.setModelExecutionTime(model_execution_time);
|
|
framed.setNavEnabled(nav_enabled);
|
|
if (send_raw_pred) {
|
|
framed.setRawPredictions((kj::ArrayPtr<const float>(s->output.data(), s->output.size())).asBytes());
|
|
}
|
|
fill_model(s, framed, net_outputs);
|
|
pm.send("modelV2", msg);
|
|
}
|
|
|
|
void posenet_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames,
|
|
const ModelOutput &net_outputs, uint64_t timestamp_eof, const bool valid) {
|
|
MessageBuilder msg;
|
|
const auto &v_mean = net_outputs.pose.velocity_mean;
|
|
const auto &r_mean = net_outputs.pose.rotation_mean;
|
|
const auto &t_mean = net_outputs.wide_from_device_euler.mean;
|
|
const auto &v_std = net_outputs.pose.velocity_std;
|
|
const auto &r_std = net_outputs.pose.rotation_std;
|
|
const auto &t_std = net_outputs.wide_from_device_euler.std;
|
|
const auto &road_transform_trans_mean = net_outputs.road_transform.position_mean;
|
|
const auto &road_transform_trans_std = net_outputs.road_transform.position_std;
|
|
|
|
auto posenetd = msg.initEvent(valid && (vipc_dropped_frames < 1)).initCameraOdometry();
|
|
posenetd.setTrans({v_mean.x, v_mean.y, v_mean.z});
|
|
posenetd.setRot({r_mean.x, r_mean.y, r_mean.z});
|
|
posenetd.setWideFromDeviceEuler({t_mean.x, t_mean.y, t_mean.z});
|
|
posenetd.setRoadTransformTrans({road_transform_trans_mean.x, road_transform_trans_mean.y, road_transform_trans_mean.z});
|
|
posenetd.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
|
|
posenetd.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
|
|
posenetd.setWideFromDeviceEulerStd({exp(t_std.x), exp(t_std.y), exp(t_std.z)});
|
|
posenetd.setRoadTransformTransStd({exp(road_transform_trans_std.x), exp(road_transform_trans_std.y), exp(road_transform_trans_std.z)});
|
|
|
|
posenetd.setTimestampEof(timestamp_eof);
|
|
posenetd.setFrameId(vipc_frame_id);
|
|
|
|
pm.send("cameraOdometry", msg);
|
|
}
|
|
|