You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							160 lines
						
					
					
						
							5.6 KiB
						
					
					
				
			
		
		
	
	
							160 lines
						
					
					
						
							5.6 KiB
						
					
					
				| import numpy as np
 | |
| 
 | |
| import common.transformations.orientation as orient
 | |
| 
 | |
| ## -- hardcoded hardware params --
 | |
| eon_f_focal_length = 910.0
 | |
| eon_d_focal_length = 650.0
 | |
| tici_f_focal_length = 2648.0
 | |
| tici_e_focal_length = tici_d_focal_length = 567.0 # probably wrong? magnification is not consistent across frame
 | |
| 
 | |
| eon_f_frame_size = (1164, 874)
 | |
| eon_d_frame_size = (816, 612)
 | |
| tici_f_frame_size = tici_e_frame_size = tici_d_frame_size = (1928, 1208)
 | |
| 
 | |
| # aka 'K' aka camera_frame_from_view_frame
 | |
| eon_fcam_intrinsics = np.array([
 | |
|   [eon_f_focal_length,  0.0,  float(eon_f_frame_size[0])/2],
 | |
|   [0.0,  eon_f_focal_length,  float(eon_f_frame_size[1])/2],
 | |
|   [0.0,  0.0,                                          1.0]])
 | |
| eon_intrinsics = eon_fcam_intrinsics # xx
 | |
| 
 | |
| eon_dcam_intrinsics = np.array([
 | |
|   [eon_d_focal_length,  0.0,  float(eon_d_frame_size[0])/2],
 | |
|   [0.0,  eon_d_focal_length,  float(eon_d_frame_size[1])/2],
 | |
|   [0.0,  0.0,                                          1.0]])
 | |
| 
 | |
| tici_fcam_intrinsics = np.array([
 | |
|   [tici_f_focal_length,  0.0,  float(tici_f_frame_size[0])/2],
 | |
|   [0.0,  tici_f_focal_length,  float(tici_f_frame_size[1])/2],
 | |
|   [0.0,  0.0,                                            1.0]])
 | |
| 
 | |
| tici_dcam_intrinsics = np.array([
 | |
|   [tici_d_focal_length,  0.0,  float(tici_d_frame_size[0])/2],
 | |
|   [0.0,  tici_d_focal_length,  float(tici_d_frame_size[1])/2],
 | |
|   [0.0,  0.0,                                            1.0]])
 | |
| 
 | |
| tici_ecam_intrinsics = tici_dcam_intrinsics
 | |
| 
 | |
| # aka 'K_inv' aka view_frame_from_camera_frame
 | |
| eon_fcam_intrinsics_inv = np.linalg.inv(eon_fcam_intrinsics)
 | |
| eon_intrinsics_inv = eon_fcam_intrinsics_inv # xx
 | |
| 
 | |
| tici_fcam_intrinsics_inv = np.linalg.inv(tici_fcam_intrinsics)
 | |
| tici_ecam_intrinsics_inv = np.linalg.inv(tici_ecam_intrinsics)
 | |
| 
 | |
| 
 | |
| FULL_FRAME_SIZE = tici_f_frame_size
 | |
| FOCAL = tici_f_focal_length
 | |
| fcam_intrinsics = tici_fcam_intrinsics
 | |
| 
 | |
| W, H = FULL_FRAME_SIZE[0], FULL_FRAME_SIZE[1]
 | |
| 
 | |
| 
 | |
| # device/mesh : x->forward, y-> right, z->down
 | |
| # view : x->right, y->down, z->forward
 | |
| device_frame_from_view_frame = np.array([
 | |
|   [ 0.,  0.,  1.],
 | |
|   [ 1.,  0.,  0.],
 | |
|   [ 0.,  1.,  0.]
 | |
| ])
 | |
| view_frame_from_device_frame = device_frame_from_view_frame.T
 | |
| 
 | |
| 
 | |
| def get_calib_from_vp(vp):
 | |
|   vp_norm = normalize(vp)
 | |
|   yaw_calib = np.arctan(vp_norm[0])
 | |
|   pitch_calib = -np.arctan(vp_norm[1]*np.cos(yaw_calib))
 | |
|   roll_calib = 0
 | |
|   return roll_calib, pitch_calib, yaw_calib
 | |
| 
 | |
| 
 | |
| # aka 'extrinsic_matrix'
 | |
| # road : x->forward, y -> left, z->up
 | |
| def get_view_frame_from_road_frame(roll, pitch, yaw, height):
 | |
|   device_from_road = orient.rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
 | |
|   view_from_road = view_frame_from_device_frame.dot(device_from_road)
 | |
|   return np.hstack((view_from_road, [[0], [height], [0]]))
 | |
| 
 | |
| 
 | |
| 
 | |
| # aka 'extrinsic_matrix'
 | |
| def get_view_frame_from_calib_frame(roll, pitch, yaw, height):
 | |
|   device_from_calib= orient.rot_from_euler([roll, pitch, yaw])
 | |
|   view_from_calib = view_frame_from_device_frame.dot(device_from_calib)
 | |
|   return np.hstack((view_from_calib, [[0], [height], [0]]))
 | |
| 
 | |
| 
 | |
| def vp_from_ke(m):
 | |
|   """
 | |
|   Computes the vanishing point from the product of the intrinsic and extrinsic
 | |
|   matrices C = KE.
 | |
| 
 | |
|   The vanishing point is defined as lim x->infinity C (x, 0, 0, 1).T
 | |
|   """
 | |
|   return (m[0, 0]/m[2, 0], m[1, 0]/m[2, 0])
 | |
| 
 | |
| 
 | |
| def roll_from_ke(m):
 | |
|   # note: different from calibration.h/RollAnglefromKE: i think that one's just wrong
 | |
|   return np.arctan2(-(m[1, 0] - m[1, 1] * m[2, 0] / m[2, 1]),
 | |
|                     -(m[0, 0] - m[0, 1] * m[2, 0] / m[2, 1]))
 | |
| 
 | |
| 
 | |
| def normalize(img_pts, intrinsics=fcam_intrinsics):
 | |
|   # normalizes image coordinates
 | |
|   # accepts single pt or array of pts
 | |
|   intrinsics_inv = np.linalg.inv(intrinsics)
 | |
|   img_pts = np.array(img_pts)
 | |
|   input_shape = img_pts.shape
 | |
|   img_pts = np.atleast_2d(img_pts)
 | |
|   img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1))))
 | |
|   img_pts_normalized = img_pts.dot(intrinsics_inv.T)
 | |
|   img_pts_normalized[(img_pts < 0).any(axis=1)] = np.nan
 | |
|   return img_pts_normalized[:, :2].reshape(input_shape)
 | |
| 
 | |
| 
 | |
| def denormalize(img_pts, intrinsics=fcam_intrinsics, width=np.inf, height=np.inf):
 | |
|   # denormalizes image coordinates
 | |
|   # accepts single pt or array of pts
 | |
|   img_pts = np.array(img_pts)
 | |
|   input_shape = img_pts.shape
 | |
|   img_pts = np.atleast_2d(img_pts)
 | |
|   img_pts = np.hstack((img_pts, np.ones((img_pts.shape[0], 1), dtype=img_pts.dtype)))
 | |
|   img_pts_denormalized = img_pts.dot(intrinsics.T)
 | |
|   if np.isfinite(width):
 | |
|     img_pts_denormalized[img_pts_denormalized[:, 0] > width] = np.nan
 | |
|     img_pts_denormalized[img_pts_denormalized[:, 0] < 0] = np.nan
 | |
|   if np.isfinite(height):
 | |
|     img_pts_denormalized[img_pts_denormalized[:, 1] > height] = np.nan
 | |
|     img_pts_denormalized[img_pts_denormalized[:, 1] < 0] = np.nan
 | |
|   return img_pts_denormalized[:, :2].reshape(input_shape)
 | |
| 
 | |
| 
 | |
| def device_from_ecef(pos_ecef, orientation_ecef, pt_ecef):
 | |
|   # device from ecef frame
 | |
|   # device frame is x -> forward, y-> right, z -> down
 | |
|   # accepts single pt or array of pts
 | |
|   input_shape = pt_ecef.shape
 | |
|   pt_ecef = np.atleast_2d(pt_ecef)
 | |
|   ecef_from_device_rot = orient.rotations_from_quats(orientation_ecef)
 | |
|   device_from_ecef_rot = ecef_from_device_rot.T
 | |
|   pt_ecef_rel = pt_ecef - pos_ecef
 | |
|   pt_device = np.einsum('jk,ik->ij', device_from_ecef_rot, pt_ecef_rel)
 | |
|   return pt_device.reshape(input_shape)
 | |
| 
 | |
| 
 | |
| def img_from_device(pt_device):
 | |
|   # img coordinates from pts in device frame
 | |
|   # first transforms to view frame, then to img coords
 | |
|   # accepts single pt or array of pts
 | |
|   input_shape = pt_device.shape
 | |
|   pt_device = np.atleast_2d(pt_device)
 | |
|   pt_view = np.einsum('jk,ik->ij', view_frame_from_device_frame, pt_device)
 | |
| 
 | |
|   # This function should never return negative depths
 | |
|   pt_view[pt_view[:, 2] < 0] = np.nan
 | |
| 
 | |
|   pt_img = pt_view/pt_view[:, 2:3]
 | |
|   return pt_img.reshape(input_shape)[:, :2]
 | |
| 
 | |
| 
 |