You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							4.2 KiB
						
					
					
				| from common.numpy_fast import mean
 | |
| from common.kalman.simple_kalman import KF1D
 | |
| 
 | |
| 
 | |
| # Default lead acceleration decay set to 50% at 1s
 | |
| _LEAD_ACCEL_TAU = 1.5
 | |
| 
 | |
| # radar tracks
 | |
| SPEED, ACCEL = 0, 1   # Kalman filter states enum
 | |
| 
 | |
| # stationary qualification parameters
 | |
| v_ego_stationary = 4.   # no stationary object flag below this speed
 | |
| 
 | |
| RADAR_TO_CENTER = 2.7   # (deprecated) RADAR is ~ 2.7m ahead from center of car
 | |
| RADAR_TO_CAMERA = 1.52   # RADAR is ~ 1.5m ahead from center of mesh frame
 | |
| 
 | |
| class Track():
 | |
|   def __init__(self, v_lead, kalman_params):
 | |
|     self.cnt = 0
 | |
|     self.aLeadTau = _LEAD_ACCEL_TAU
 | |
|     self.K_A = kalman_params.A
 | |
|     self.K_C = kalman_params.C
 | |
|     self.K_K = kalman_params.K
 | |
|     self.kf = KF1D([[v_lead], [0.0]], self.K_A, self.K_C, self.K_K)
 | |
| 
 | |
|   def update(self, d_rel, y_rel, v_rel, v_lead, measured):
 | |
|     # relative values, copy
 | |
|     self.dRel = d_rel   # LONG_DIST
 | |
|     self.yRel = y_rel   # -LAT_DIST
 | |
|     self.vRel = v_rel   # REL_SPEED
 | |
|     self.vLead = v_lead
 | |
|     self.measured = measured   # measured or estimate
 | |
| 
 | |
|     # computed velocity and accelerations
 | |
|     if self.cnt > 0:
 | |
|       self.kf.update(self.vLead)
 | |
| 
 | |
|     self.vLeadK = float(self.kf.x[SPEED][0])
 | |
|     self.aLeadK = float(self.kf.x[ACCEL][0])
 | |
| 
 | |
|     # Learn if constant acceleration
 | |
|     if abs(self.aLeadK) < 0.5:
 | |
|       self.aLeadTau = _LEAD_ACCEL_TAU
 | |
|     else:
 | |
|       self.aLeadTau *= 0.9
 | |
| 
 | |
|     self.cnt += 1
 | |
| 
 | |
|   def get_key_for_cluster(self):
 | |
|     # Weigh y higher since radar is inaccurate in this dimension
 | |
|     return [self.dRel, self.yRel*2, self.vRel]
 | |
| 
 | |
|   def reset_a_lead(self, aLeadK, aLeadTau):
 | |
|     self.kf = KF1D([[self.vLead], [aLeadK]], self.K_A, self.K_C, self.K_K)
 | |
|     self.aLeadK = aLeadK
 | |
|     self.aLeadTau = aLeadTau
 | |
| 
 | |
| 
 | |
| class Cluster():
 | |
|   def __init__(self):
 | |
|     self.tracks = set()
 | |
| 
 | |
|   def add(self, t):
 | |
|     # add the first track
 | |
|     self.tracks.add(t)
 | |
| 
 | |
|   # TODO: make generic
 | |
|   @property
 | |
|   def dRel(self):
 | |
|     return mean([t.dRel for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def yRel(self):
 | |
|     return mean([t.yRel for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def vRel(self):
 | |
|     return mean([t.vRel for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def aRel(self):
 | |
|     return mean([t.aRel for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def vLead(self):
 | |
|     return mean([t.vLead for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def dPath(self):
 | |
|     return mean([t.dPath for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def vLat(self):
 | |
|     return mean([t.vLat for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def vLeadK(self):
 | |
|     return mean([t.vLeadK for t in self.tracks])
 | |
| 
 | |
|   @property
 | |
|   def aLeadK(self):
 | |
|     if all(t.cnt <= 1 for t in self.tracks):
 | |
|       return 0.
 | |
|     else:
 | |
|       return mean([t.aLeadK for t in self.tracks if t.cnt > 1])
 | |
| 
 | |
|   @property
 | |
|   def aLeadTau(self):
 | |
|     if all(t.cnt <= 1 for t in self.tracks):
 | |
|       return _LEAD_ACCEL_TAU
 | |
|     else:
 | |
|       return mean([t.aLeadTau for t in self.tracks if t.cnt > 1])
 | |
| 
 | |
|   @property
 | |
|   def measured(self):
 | |
|     return any(t.measured for t in self.tracks)
 | |
| 
 | |
|   def get_RadarState(self, model_prob=0.0):
 | |
|     return {
 | |
|       "dRel": float(self.dRel),
 | |
|       "yRel": float(self.yRel),
 | |
|       "vRel": float(self.vRel),
 | |
|       "vLead": float(self.vLead),
 | |
|       "vLeadK": float(self.vLeadK),
 | |
|       "aLeadK": float(self.aLeadK),
 | |
|       "status": True,
 | |
|       "fcw": self.is_potential_fcw(model_prob),
 | |
|       "modelProb": model_prob,
 | |
|       "radar": True,
 | |
|       "aLeadTau": float(self.aLeadTau)
 | |
|     }
 | |
| 
 | |
|   def get_RadarState_from_vision(self, lead_msg, v_ego):
 | |
|     return {
 | |
|       "dRel": float(lead_msg.x[0] - RADAR_TO_CAMERA),
 | |
|       "yRel": float(-lead_msg.y[0]),
 | |
|       "vRel": float(lead_msg.v[0] - v_ego),
 | |
|       "vLead": float(lead_msg.v[0]),
 | |
|       "vLeadK": float(lead_msg.v[0]),
 | |
|       "aLeadK": float(0),
 | |
|       "aLeadTau": _LEAD_ACCEL_TAU,
 | |
|       "fcw": False,
 | |
|       "modelProb": float(lead_msg.prob),
 | |
|       "radar": False,
 | |
|       "status": True
 | |
|     }
 | |
| 
 | |
|   def __str__(self):
 | |
|     ret = f"x: {self.dRel:4.1f}  y: {self.yRel:4.1f}  v: {self.vRel:4.1f}  a: {self.aLeadK:4.1f}"
 | |
|     return ret
 | |
| 
 | |
|   def potential_low_speed_lead(self, v_ego):
 | |
|     # stop for stuff in front of you and low speed, even without model confirmation
 | |
|     # Radar points closer than 0.75, are almost always glitches on toyota radars
 | |
|     return abs(self.yRel) < 1.0 and (v_ego < v_ego_stationary) and (0.75 < self.dRel < 25)
 | |
| 
 | |
|   def is_potential_fcw(self, model_prob):
 | |
|     return model_prob > .9
 | |
| 
 |