openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

840 lines
31 KiB

#pragma once
#include "safety_declarations.h"
#include "can.h"
// include the safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_rivian.h"
#include "safety/safety_subaru.h"
#include "safety/safety_subaru_preglobal.h"
#include "safety/safety_mazda.h"
#include "safety/safety_nissan.h"
#include "safety/safety_volkswagen_mqb.h"
#include "safety/safety_volkswagen_pq.h"
#include "safety/safety_elm327.h"
#include "safety/safety_body.h"
// CAN-FD only safety modes
#ifdef CANFD
#include "safety/safety_hyundai_canfd.h"
#endif
uint32_t GET_BYTES(const CANPacket_t *msg, int start, int len) {
uint32_t ret = 0U;
for (int i = 0; i < len; i++) {
const uint32_t shift = i * 8;
ret |= (((uint32_t)msg->data[start + i]) << shift);
}
return ret;
}
const int MAX_WRONG_COUNTERS = 5;
// This can be set by the safety hooks
bool controls_allowed = false;
bool relay_malfunction = false;
bool gas_pressed = false;
bool gas_pressed_prev = false;
bool brake_pressed = false;
bool brake_pressed_prev = false;
bool regen_braking = false;
bool regen_braking_prev = false;
bool steering_disengage;
bool steering_disengage_prev;
bool cruise_engaged_prev = false;
struct sample_t vehicle_speed;
bool vehicle_moving = false;
bool acc_main_on = false; // referred to as "ACC off" in ISO 15622:2018
int cruise_button_prev = 0;
bool safety_rx_checks_invalid = false;
// for safety modes with torque steering control
int desired_torque_last = 0; // last desired steer torque
int rt_torque_last = 0; // last desired torque for real time check
int valid_steer_req_count = 0; // counter for steer request bit matching non-zero torque
int invalid_steer_req_count = 0; // counter to allow multiple frames of mismatching torque request bit
struct sample_t torque_meas; // last 6 motor torques produced by the eps
struct sample_t torque_driver; // last 6 driver torques measured
uint32_t ts_torque_check_last = 0;
uint32_t ts_steer_req_mismatch_last = 0; // last timestamp steer req was mismatched with torque
// state for controls_allowed timeout logic
bool heartbeat_engaged = false; // openpilot enabled, passed in heartbeat USB command
uint32_t heartbeat_engaged_mismatches = 0; // count of mismatches between heartbeat_engaged and controls_allowed
// for safety modes with angle steering control
uint32_t ts_angle_last = 0;
int desired_angle_last = 0;
struct sample_t angle_meas; // last 6 steer angles/curvatures
int alternative_experience = 0;
// time since safety mode has been changed
uint32_t safety_mode_cnt = 0U;
uint16_t current_safety_mode = SAFETY_SILENT;
uint16_t current_safety_param = 0;
static const safety_hooks *current_hooks = &nooutput_hooks;
safety_config current_safety_config;
static void generic_rx_checks(void);
static void stock_ecu_check(bool stock_ecu_detected);
static bool is_msg_valid(RxCheck addr_list[], int index) {
bool valid = true;
if (index != -1) {
if (!addr_list[index].status.valid_checksum || !addr_list[index].status.valid_quality_flag || (addr_list[index].status.wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = false;
}
}
return valid;
}
static int get_addr_check_index(const CANPacket_t *to_push, RxCheck addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int length = GET_LEN(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].status.msg_seen) {
for (uint8_t j = 0U; (j < MAX_ADDR_CHECK_MSGS) && (addr_list[i].msg[j].addr != 0); j++) {
if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].status.index = j;
addr_list[i].status.msg_seen = true;
break;
}
}
}
if (addr_list[i].status.msg_seen) {
int idx = addr_list[i].status.index;
if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
}
return index;
}
static void update_addr_timestamp(RxCheck addr_list[], int index) {
if (index != -1) {
uint32_t ts = microsecond_timer_get();
addr_list[index].status.last_timestamp = ts;
}
}
static void update_counter(RxCheck addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].status.last_counter + 1U) % (addr_list[index].msg[addr_list[index].status.index].max_counter + 1U);
addr_list[index].status.wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].status.wrong_counters = CLAMP(addr_list[index].status.wrong_counters, 0, MAX_WRONG_COUNTERS);
addr_list[index].status.last_counter = counter;
}
}
static bool rx_msg_safety_check(const CANPacket_t *to_push,
const safety_config *cfg,
const safety_hooks *safety_hooks) {
int index = get_addr_check_index(to_push, cfg->rx_checks, cfg->rx_checks_len);
update_addr_timestamp(cfg->rx_checks, index);
if (index != -1) {
// checksum check
if ((safety_hooks->get_checksum != NULL) && (safety_hooks->compute_checksum != NULL) && !cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_checksum) {
uint32_t checksum = safety_hooks->get_checksum(to_push);
uint32_t checksum_comp = safety_hooks->compute_checksum(to_push);
cfg->rx_checks[index].status.valid_checksum = checksum_comp == checksum;
} else {
cfg->rx_checks[index].status.valid_checksum = cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_checksum;
}
// counter check
if ((safety_hooks->get_counter != NULL) && (cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].max_counter > 0U)) {
uint8_t counter = safety_hooks->get_counter(to_push);
update_counter(cfg->rx_checks, index, counter);
} else {
cfg->rx_checks[index].status.wrong_counters = cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_counter ? 0 : MAX_WRONG_COUNTERS;
}
// quality flag check
if ((safety_hooks->get_quality_flag_valid != NULL) && cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].quality_flag) {
cfg->rx_checks[index].status.valid_quality_flag = safety_hooks->get_quality_flag_valid(to_push);
} else {
cfg->rx_checks[index].status.valid_quality_flag = true;
}
}
return is_msg_valid(cfg->rx_checks, index);
}
bool safety_rx_hook(const CANPacket_t *to_push) {
bool controls_allowed_prev = controls_allowed;
bool valid = rx_msg_safety_check(to_push, &current_safety_config, current_hooks);
bool whitelisted = get_addr_check_index(to_push, current_safety_config.rx_checks, current_safety_config.rx_checks_len) != -1;
if (valid && whitelisted) {
current_hooks->rx(to_push);
}
// Handles gas, brake, and regen paddle
generic_rx_checks();
// the relay malfunction hook runs on all incoming rx messages.
// check all applicable tx msgs for liveness on sending bus.
// used to detect a relay malfunction or control messages from disabled ECUs like the radar
const int bus = GET_BUS(to_push);
const int addr = GET_ADDR(to_push);
for (int i = 0; i < current_safety_config.tx_msgs_len; i++) {
const CanMsg *m = &current_safety_config.tx_msgs[i];
if (m->check_relay) {
stock_ecu_check((m->addr == addr) && (m->bus == bus));
}
}
// reset mismatches on rising edge of controls_allowed to avoid rare race condition
if (controls_allowed && !controls_allowed_prev) {
heartbeat_engaged_mismatches = 0;
}
return valid;
}
static bool tx_msg_safety_check(const CANPacket_t *to_send, const CanMsg msg_list[], int len) {
int addr = GET_ADDR(to_send);
int bus = GET_BUS(to_send);
int length = GET_LEN(to_send);
bool whitelisted = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) {
whitelisted = true;
break;
}
}
return whitelisted;
}
bool safety_tx_hook(CANPacket_t *to_send) {
bool whitelisted = tx_msg_safety_check(to_send, current_safety_config.tx_msgs, current_safety_config.tx_msgs_len);
if ((current_safety_mode == SAFETY_ALLOUTPUT) || (current_safety_mode == SAFETY_ELM327)) {
whitelisted = true;
}
bool safety_allowed = false;
if (whitelisted) {
safety_allowed = current_hooks->tx(to_send);
}
return !relay_malfunction && whitelisted && safety_allowed;
}
static int get_fwd_bus(int bus_num) {
int destination_bus;
if (bus_num == 0) {
destination_bus = 2;
} else if (bus_num == 2) {
destination_bus = 0;
} else {
destination_bus = -1;
}
return destination_bus;
}
int safety_fwd_hook(int bus_num, int addr) {
bool blocked = relay_malfunction || current_safety_config.disable_forwarding;
// Block messages that are being checked for relay malfunctions. Safety modes can opt out of this
// in the case of selective AEB forwarding
const int destination_bus = get_fwd_bus(bus_num);
if (!blocked) {
for (int i = 0; i < current_safety_config.tx_msgs_len; i++) {
const CanMsg *m = &current_safety_config.tx_msgs[i];
if (m->check_relay && !m->disable_static_blocking && (m->addr == addr) && (m->bus == destination_bus)) {
blocked = true;
break;
}
}
}
if (!blocked && (current_hooks->fwd != NULL)) {
blocked = current_hooks->fwd(bus_num, addr);
}
return blocked ? -1 : destination_bus;
}
bool get_longitudinal_allowed(void) {
return controls_allowed && !gas_pressed_prev;
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
for (uint16_t i = 0U; i <= 0xFFU; i++) {
uint8_t crc = (uint8_t)i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#ifdef CANFD
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
for (uint16_t i = 0; i < 256U; i++) {
uint16_t crc = i << 8U;
for (uint16_t j = 0; j < 8U; j++) {
if ((crc & 0x8000U) != 0U) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#endif
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_config *cfg) {
const uint8_t MAX_MISSED_MSGS = 10U;
bool rx_checks_invalid = false;
uint32_t ts = microsecond_timer_get();
if (cfg != NULL) {
for (int i=0; i < cfg->rx_checks_len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, cfg->rx_checks[i].status.last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
uint32_t timestep = 1e6 / cfg->rx_checks[i].msg[cfg->rx_checks[i].status.index].frequency;
bool lagging = elapsed_time > MAX(timestep * MAX_MISSED_MSGS, 1e6);
cfg->rx_checks[i].status.lagging = lagging;
if (lagging) {
controls_allowed = false;
}
if (lagging || !is_msg_valid(cfg->rx_checks, i)) {
rx_checks_invalid = true;
}
}
}
safety_rx_checks_invalid = rx_checks_invalid;
}
static void relay_malfunction_set(void) {
relay_malfunction = true;
fault_occurred(FAULT_RELAY_MALFUNCTION);
}
static void generic_rx_checks(void) {
// exit controls on rising edge of gas press
if (gas_pressed && !gas_pressed_prev && !(alternative_experience & ALT_EXP_DISABLE_DISENGAGE_ON_GAS)) {
controls_allowed = false;
}
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = false;
}
brake_pressed_prev = brake_pressed;
// exit controls on rising edge of regen paddle
if (regen_braking && (!regen_braking_prev || vehicle_moving)) {
controls_allowed = false;
}
regen_braking_prev = regen_braking;
// exit controls on rising edge of steering override/disengage
if (steering_disengage && !steering_disengage_prev) {
controls_allowed = false;
}
steering_disengage_prev = steering_disengage;
}
static void stock_ecu_check(bool stock_ecu_detected) {
// allow 1s of transition timeout after relay changes state before assessing malfunctioning
const uint32_t RELAY_TRNS_TIMEOUT = 1U;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
}
static void relay_malfunction_reset(void) {
relay_malfunction = false;
fault_recovered(FAULT_RELAY_MALFUNCTION);
}
// resets values and min/max for sample_t struct
static void reset_sample(struct sample_t *sample) {
for (int i = 0; i < MAX_SAMPLE_VALS; i++) {
sample->values[i] = 0;
}
update_sample(sample, 0);
}
int set_safety_hooks(uint16_t mode, uint16_t param) {
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_BODY, &body_hooks},
{SAFETY_FORD, &ford_hooks},
{SAFETY_RIVIAN, &rivian_hooks},
#ifdef CANFD
{SAFETY_HYUNDAI_CANFD, &hyundai_canfd_hooks},
#endif
#ifdef ALLOW_DEBUG
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_SUBARU_PREGLOBAL, &subaru_preglobal_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
#endif
};
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
regen_braking = false;
regen_braking_prev = false;
steering_disengage = false;
steering_disengage_prev = false;
cruise_engaged_prev = false;
vehicle_moving = false;
acc_main_on = false;
cruise_button_prev = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_angle_last = 0;
desired_angle_last = 0;
ts_torque_check_last = 0;
ts_steer_req_mismatch_last = 0;
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
// reset samples
reset_sample(&vehicle_speed);
reset_sample(&torque_meas);
reset_sample(&torque_driver);
reset_sample(&angle_meas);
controls_allowed = false;
relay_malfunction_reset();
safety_rx_checks_invalid = false;
current_safety_config.rx_checks = NULL;
current_safety_config.rx_checks_len = 0;
current_safety_config.tx_msgs = NULL;
current_safety_config.tx_msgs_len = 0;
current_safety_config.disable_forwarding = false;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = mode;
current_safety_param = param;
set_status = 0; // set
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
safety_config cfg = current_hooks->init(param);
current_safety_config.rx_checks = cfg.rx_checks;
current_safety_config.rx_checks_len = cfg.rx_checks_len;
current_safety_config.tx_msgs = cfg.tx_msgs;
current_safety_config.tx_msgs_len = cfg.tx_msgs_len;
current_safety_config.disable_forwarding = cfg.disable_forwarding;
// reset all dynamic fields in addr struct
for (int j = 0; j < current_safety_config.rx_checks_len; j++) {
current_safety_config.rx_checks[j].status = (RxStatus){0};
}
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
int max_value = (1 << MAX((bits - 1), 0));
if (d >= max_value) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the sample_t struct
void update_sample(struct sample_t *sample, int sample_new) {
for (int i = MAX_SAMPLE_VALS - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < MAX_SAMPLE_VALS; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
static bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded torque value isn't too far from measured
static bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// check that commanded value isn't fighting against driver
static bool driver_limit_check(int val, int val_last, const struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
// torque delta/rate limits
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// driver
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// real time check, mainly used for steer torque rate limiter
static bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return max_limit_check(val, highest_val, lowest_val);
}
// interp function that holds extreme values
static float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
dx = MAX(dx, 0.0001);
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}
int ROUND(float val) {
return val + ((val > 0.0) ? 0.5 : -0.5);
}
// Safety checks for longitudinal actuation
bool longitudinal_accel_checks(int desired_accel, const LongitudinalLimits limits) {
bool accel_valid = get_longitudinal_allowed() && !max_limit_check(desired_accel, limits.max_accel, limits.min_accel);
bool accel_inactive = desired_accel == limits.inactive_accel;
return !(accel_valid || accel_inactive);
}
bool longitudinal_speed_checks(int desired_speed, const LongitudinalLimits limits) {
return !get_longitudinal_allowed() && (desired_speed != limits.inactive_speed);
}
bool longitudinal_transmission_rpm_checks(int desired_transmission_rpm, const LongitudinalLimits limits) {
bool transmission_rpm_valid = get_longitudinal_allowed() && !max_limit_check(desired_transmission_rpm, limits.max_transmission_rpm, limits.min_transmission_rpm);
bool transmission_rpm_inactive = desired_transmission_rpm == limits.inactive_transmission_rpm;
return !(transmission_rpm_valid || transmission_rpm_inactive);
}
bool longitudinal_gas_checks(int desired_gas, const LongitudinalLimits limits) {
bool gas_valid = get_longitudinal_allowed() && !max_limit_check(desired_gas, limits.max_gas, limits.min_gas);
bool gas_inactive = desired_gas == limits.inactive_gas;
return !(gas_valid || gas_inactive);
}
bool longitudinal_brake_checks(int desired_brake, const LongitudinalLimits limits) {
bool violation = false;
violation |= !get_longitudinal_allowed() && (desired_brake != 0);
violation |= desired_brake > limits.max_brake;
return violation;
}
// Safety checks for torque-based steering commands
bool steer_torque_cmd_checks(int desired_torque, int steer_req, const TorqueSteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
if (controls_allowed) {
// Some safety models support variable torque limit based on vehicle speed
int max_torque = limits.max_torque;
if (limits.dynamic_max_torque) {
const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.;
max_torque = interpolate(limits.max_torque_lookup, fudged_speed) + 1;
max_torque = CLAMP(max_torque, -limits.max_torque, limits.max_torque);
}
// *** global torque limit check ***
violation |= max_limit_check(desired_torque, max_torque, -max_torque);
// *** torque rate limit check ***
if (limits.type == TorqueDriverLimited) {
violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver,
max_torque, limits.max_rate_up, limits.max_rate_down,
limits.driver_torque_allowance, limits.driver_torque_multiplier);
} else {
violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas,
limits.max_rate_up, limits.max_rate_down, limits.max_torque_error);
}
desired_torque_last = desired_torque;
// *** torque real time rate limit check ***
violation |= rt_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta);
// every RT_INTERVAL set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last);
if (ts_elapsed > MAX_TORQUE_RT_INTERVAL) {
rt_torque_last = desired_torque;
ts_torque_check_last = ts;
}
}
// no torque if controls is not allowed
if (!controls_allowed && (desired_torque != 0)) {
violation = true;
}
// certain safety modes set their steer request bit low for one or more frame at a
// predefined max frequency to avoid steering faults in certain situations
bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0);
if (!limits.has_steer_req_tolerance) {
if (steer_req_mismatch) {
violation = true;
}
} else {
if (steer_req_mismatch) {
if (invalid_steer_req_count == 0) {
// disallow torque cut if not enough recent matching steer_req messages
if (valid_steer_req_count < limits.min_valid_request_frames) {
violation = true;
}
// or we've cut torque too recently in time
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last);
if (ts_elapsed < limits.min_valid_request_rt_interval) {
violation = true;
}
} else {
// or we're cutting more frames consecutively than allowed
if (invalid_steer_req_count >= limits.max_invalid_request_frames) {
violation = true;
}
}
valid_steer_req_count = 0;
ts_steer_req_mismatch_last = ts;
invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames);
} else {
valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames);
invalid_steer_req_count = 0;
}
}
// reset to 0 if either controls is not allowed or there's a violation
if (violation || !controls_allowed) {
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_torque_check_last = ts;
ts_steer_req_mismatch_last = ts;
}
return violation;
}
// Safety checks for angle-based steering commands
bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const AngleSteeringLimits limits) {
bool violation = false;
if (controls_allowed && steer_control_enabled) {
// convert floating point angle rate limits to integers in the scale of the desired angle on CAN,
// add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are
// always slightly above openpilot's in case we read an updated speed in between angle commands
// TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset
const float fudged_speed = (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.;
int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.;
int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, fudged_speed) * limits.angle_deg_to_can) + 1.;
// allow down limits at zero since small floats from openpilot will be rounded to 0
// TODO: openpilot should be cognizant of this and not send small floats
int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down);
int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up);
// check that commanded angle value isn't too far from measured, used to limit torque for some safety modes
// ensure we start moving in direction of meas while respecting relaxed rate limits if error is exceeded
if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) {
// flipped fudge to avoid false positives
const float fudged_speed_error = (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.;
const int delta_angle_up_relaxed = (interpolate(limits.angle_rate_up_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.;
const int delta_angle_down_relaxed = (interpolate(limits.angle_rate_down_lookup, fudged_speed_error) * limits.angle_deg_to_can) - 1.;
// the minimum and maximum angle allowed based on the measured angle
const int lowest_desired_angle_error = angle_meas.min - limits.max_angle_error - 1;
const int highest_desired_angle_error = angle_meas.max + limits.max_angle_error + 1;
// the MAX is to allow the desired angle to hit the edge of the bounds and not require going under it
if (desired_angle_last > highest_desired_angle_error) {
const int delta = (desired_angle_last >= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed;
highest_desired_angle = MAX(desired_angle_last - delta, highest_desired_angle_error);
} else if (desired_angle_last < lowest_desired_angle_error) {
const int delta = (desired_angle_last <= 0) ? delta_angle_down_relaxed : delta_angle_up_relaxed;
lowest_desired_angle = MIN(desired_angle_last + delta, lowest_desired_angle_error);
} else {
// already inside error boundary, don't allow commanding outside it
highest_desired_angle = MIN(highest_desired_angle, highest_desired_angle_error);
lowest_desired_angle = MAX(lowest_desired_angle, lowest_desired_angle_error);
}
// don't enforce above the max steer
// TODO: this should always be done
lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_angle, limits.max_angle);
highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_angle, limits.max_angle);
}
// check not above ISO 11270 lateral accel assuming worst case road roll
if (limits.angle_is_curvature) {
// ISO 11270
static const float ISO_LATERAL_ACCEL = 3.0; // m/s^2
// Limit to average banked road since safety doesn't have the roll
static const float EARTH_G = 9.81;
static const float AVERAGE_ROAD_ROLL = 0.06; // ~3.4 degrees, 6% superelevation
static const float MAX_LATERAL_ACCEL = ISO_LATERAL_ACCEL - (EARTH_G * AVERAGE_ROAD_ROLL); // ~2.4 m/s^2
// Allow small tolerance by using minimum speed and rounding curvature up
const float speed_lower = MAX(vehicle_speed.min / VEHICLE_SPEED_FACTOR, 1.0);
const float speed_upper = MAX(vehicle_speed.max / VEHICLE_SPEED_FACTOR, 1.0);
const int max_curvature_upper = (MAX_LATERAL_ACCEL / (speed_lower * speed_lower) * limits.angle_deg_to_can) + 1.;
const int max_curvature_lower = (MAX_LATERAL_ACCEL / (speed_upper * speed_upper) * limits.angle_deg_to_can) - 1.;
// ensure that the curvature error doesn't try to enforce above this limit
if (desired_angle_last > 0) {
lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_lower, max_curvature_lower);
highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_upper, max_curvature_upper);
} else {
lowest_desired_angle = CLAMP(lowest_desired_angle, -max_curvature_upper, max_curvature_upper);
highest_desired_angle = CLAMP(highest_desired_angle, -max_curvature_lower, max_curvature_lower);
}
}
// check for violation;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
const int max_inactive_angle = CLAMP(angle_meas.max, -limits.max_angle, limits.max_angle) + 1;
const int min_inactive_angle = CLAMP(angle_meas.min, -limits.max_angle, limits.max_angle) - 1;
violation |= (limits.inactive_angle_is_zero ? (desired_angle != 0) :
max_limit_check(desired_angle, max_inactive_angle, min_inactive_angle));
}
// No angle control allowed when controls are not allowed
violation |= !controls_allowed && steer_control_enabled;
return violation;
}
void pcm_cruise_check(bool cruise_engaged) {
// Enter controls on rising edge of stock ACC, exit controls if stock ACC disengages
if (!cruise_engaged) {
controls_allowed = false;
}
if (cruise_engaged && !cruise_engaged_prev) {
controls_allowed = true;
}
cruise_engaged_prev = cruise_engaged;
}