openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

222 lines
8.3 KiB

#include "bxcan_declarations.h"
// IRQs: CAN1_TX, CAN1_RX0, CAN1_SCE
// CAN2_TX, CAN2_RX0, CAN2_SCE
// CAN3_TX, CAN3_RX0, CAN3_SCE
CAN_TypeDef *cans[CAN_ARRAY_SIZE] = {CAN1, CAN2, CAN3};
uint8_t can_irq_number[CAN_IRQS_ARRAY_SIZE][CAN_IRQS_ARRAY_SIZE] = {
{ CAN1_TX_IRQn, CAN1_RX0_IRQn, CAN1_SCE_IRQn },
{ CAN2_TX_IRQn, CAN2_RX0_IRQn, CAN2_SCE_IRQn },
{ CAN3_TX_IRQn, CAN3_RX0_IRQn, CAN3_SCE_IRQn },
};
bool can_set_speed(uint8_t can_number) {
bool ret = true;
CAN_TypeDef *CANx = CANIF_FROM_CAN_NUM(can_number);
uint8_t bus_number = BUS_NUM_FROM_CAN_NUM(can_number);
ret &= llcan_set_speed(
CANx,
bus_config[bus_number].can_speed,
can_loopback,
(unsigned int)(can_silent) & (1U << can_number)
);
return ret;
}
void can_clear_send(CAN_TypeDef *CANx, uint8_t can_number) {
can_health[can_number].can_core_reset_cnt += 1U;
llcan_clear_send(CANx);
}
void update_can_health_pkt(uint8_t can_number, uint32_t ir_reg) {
CAN_TypeDef *CANx = CANIF_FROM_CAN_NUM(can_number);
uint32_t esr_reg = CANx->ESR;
can_health[can_number].bus_off = ((esr_reg & CAN_ESR_BOFF) >> CAN_ESR_BOFF_Pos);
can_health[can_number].bus_off_cnt += can_health[can_number].bus_off;
can_health[can_number].error_warning = ((esr_reg & CAN_ESR_EWGF) >> CAN_ESR_EWGF_Pos);
can_health[can_number].error_passive = ((esr_reg & CAN_ESR_EPVF) >> CAN_ESR_EPVF_Pos);
can_health[can_number].last_error = ((esr_reg & CAN_ESR_LEC) >> CAN_ESR_LEC_Pos);
if ((can_health[can_number].last_error != 0U) && (can_health[can_number].last_error != 7U)) {
can_health[can_number].last_stored_error = can_health[can_number].last_error;
}
can_health[can_number].receive_error_cnt = ((esr_reg & CAN_ESR_REC) >> CAN_ESR_REC_Pos);
can_health[can_number].transmit_error_cnt = ((esr_reg & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos);
can_health[can_number].irq0_call_rate = interrupts[can_irq_number[can_number][0]].call_rate;
can_health[can_number].irq1_call_rate = interrupts[can_irq_number[can_number][1]].call_rate;
can_health[can_number].irq2_call_rate = interrupts[can_irq_number[can_number][2]].call_rate;
if (ir_reg != 0U) {
can_health[can_number].total_error_cnt += 1U;
// RX message lost due to FIFO overrun
if ((CANx->RF0R & (CAN_RF0R_FOVR0)) != 0U) {
can_health[can_number].total_rx_lost_cnt += 1U;
CANx->RF0R &= ~(CAN_RF0R_FOVR0);
}
can_clear_send(CANx, can_number);
}
}
// ***************************** CAN *****************************
// CANx_SCE IRQ Handler
static void can_sce(uint8_t can_number) {
update_can_health_pkt(can_number, 1U);
}
// CANx_TX IRQ Handler
void process_can(uint8_t can_number) {
if (can_number != 0xffU) {
ENTER_CRITICAL();
CAN_TypeDef *CANx = CANIF_FROM_CAN_NUM(can_number);
uint8_t bus_number = BUS_NUM_FROM_CAN_NUM(can_number);
// check for empty mailbox
CANPacket_t to_send;
if ((CANx->TSR & (CAN_TSR_TERR0 | CAN_TSR_ALST0)) != 0U) { // last TX failed due to error arbitration lost
can_health[can_number].total_tx_lost_cnt += 1U;
CANx->TSR |= (CAN_TSR_TERR0 | CAN_TSR_ALST0);
}
if ((CANx->TSR & CAN_TSR_TME0) == CAN_TSR_TME0) {
// add successfully transmitted message to my fifo
if ((CANx->TSR & CAN_TSR_RQCP0) == CAN_TSR_RQCP0) {
if ((CANx->TSR & CAN_TSR_TXOK0) == CAN_TSR_TXOK0) {
CANPacket_t to_push;
to_push.fd = 0U;
to_push.returned = 1U;
to_push.rejected = 0U;
to_push.extended = (CANx->sTxMailBox[0].TIR >> 2) & 0x1U;
to_push.addr = (to_push.extended != 0U) ? (CANx->sTxMailBox[0].TIR >> 3) : (CANx->sTxMailBox[0].TIR >> 21);
to_push.data_len_code = CANx->sTxMailBox[0].TDTR & 0xFU;
to_push.bus = bus_number;
WORD_TO_BYTE_ARRAY(&to_push.data[0], CANx->sTxMailBox[0].TDLR);
WORD_TO_BYTE_ARRAY(&to_push.data[4], CANx->sTxMailBox[0].TDHR);
can_set_checksum(&to_push);
rx_buffer_overflow += can_push(&can_rx_q, &to_push) ? 0U : 1U;
}
// clear interrupt
// careful, this can also be cleared by requesting a transmission
CANx->TSR |= CAN_TSR_RQCP0;
}
if (can_pop(can_queues[bus_number], &to_send)) {
if (can_check_checksum(&to_send)) {
can_health[can_number].total_tx_cnt += 1U;
// only send if we have received a packet
CANx->sTxMailBox[0].TIR = ((to_send.extended != 0U) ? (to_send.addr << 3) : (to_send.addr << 21)) | (to_send.extended << 2);
CANx->sTxMailBox[0].TDTR = to_send.data_len_code;
BYTE_ARRAY_TO_WORD(CANx->sTxMailBox[0].TDLR, &to_send.data[0]);
BYTE_ARRAY_TO_WORD(CANx->sTxMailBox[0].TDHR, &to_send.data[4]);
// Send request TXRQ
CANx->sTxMailBox[0].TIR |= 0x1U;
} else {
can_health[can_number].total_tx_checksum_error_cnt += 1U;
}
refresh_can_tx_slots_available();
}
}
EXIT_CRITICAL();
}
}
// CANx_RX0 IRQ Handler
// blink blue when we are receiving CAN messages
void can_rx(uint8_t can_number) {
CAN_TypeDef *CANx = CANIF_FROM_CAN_NUM(can_number);
uint8_t bus_number = BUS_NUM_FROM_CAN_NUM(can_number);
while ((CANx->RF0R & CAN_RF0R_FMP0) != 0U) {
can_health[can_number].total_rx_cnt += 1U;
// can is live
pending_can_live = 1;
// add to my fifo
CANPacket_t to_push;
to_push.fd = 0U;
to_push.returned = 0U;
to_push.rejected = 0U;
to_push.extended = (CANx->sFIFOMailBox[0].RIR >> 2) & 0x1U;
to_push.addr = (to_push.extended != 0U) ? (CANx->sFIFOMailBox[0].RIR >> 3) : (CANx->sFIFOMailBox[0].RIR >> 21);
to_push.data_len_code = CANx->sFIFOMailBox[0].RDTR & 0xFU;
to_push.bus = bus_number;
WORD_TO_BYTE_ARRAY(&to_push.data[0], CANx->sFIFOMailBox[0].RDLR);
WORD_TO_BYTE_ARRAY(&to_push.data[4], CANx->sFIFOMailBox[0].RDHR);
can_set_checksum(&to_push);
// forwarding (panda only)
int bus_fwd_num = safety_fwd_hook(bus_number, to_push.addr);
if (bus_fwd_num != -1) {
CANPacket_t to_send;
to_send.fd = 0U;
to_send.returned = 0U;
to_send.rejected = 0U;
to_send.extended = to_push.extended; // TXRQ
to_send.addr = to_push.addr;
to_send.bus = to_push.bus;
to_send.data_len_code = to_push.data_len_code;
(void)memcpy(to_send.data, to_push.data, dlc_to_len[to_push.data_len_code]);
can_set_checksum(&to_send);
can_send(&to_send, bus_fwd_num, true);
can_health[can_number].total_fwd_cnt += 1U;
}
safety_rx_invalid += safety_rx_hook(&to_push) ? 0U : 1U;
ignition_can_hook(&to_push);
led_set(LED_BLUE, true);
rx_buffer_overflow += can_push(&can_rx_q, &to_push) ? 0U : 1U;
// next
CANx->RF0R |= CAN_RF0R_RFOM0;
}
}
static void CAN1_TX_IRQ_Handler(void) { process_can(0); }
static void CAN1_RX0_IRQ_Handler(void) { can_rx(0); }
static void CAN1_SCE_IRQ_Handler(void) { can_sce(0); }
static void CAN2_TX_IRQ_Handler(void) { process_can(1); }
static void CAN2_RX0_IRQ_Handler(void) { can_rx(1); }
static void CAN2_SCE_IRQ_Handler(void) { can_sce(1); }
static void CAN3_TX_IRQ_Handler(void) { process_can(2); }
static void CAN3_RX0_IRQ_Handler(void) { can_rx(2); }
static void CAN3_SCE_IRQ_Handler(void) { can_sce(2); }
bool can_init(uint8_t can_number) {
bool ret = false;
REGISTER_INTERRUPT(CAN1_TX_IRQn, CAN1_TX_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
REGISTER_INTERRUPT(CAN1_RX0_IRQn, CAN1_RX0_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
REGISTER_INTERRUPT(CAN1_SCE_IRQn, CAN1_SCE_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_1)
REGISTER_INTERRUPT(CAN2_TX_IRQn, CAN2_TX_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_2)
REGISTER_INTERRUPT(CAN2_RX0_IRQn, CAN2_RX0_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_2)
REGISTER_INTERRUPT(CAN2_SCE_IRQn, CAN2_SCE_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_2)
REGISTER_INTERRUPT(CAN3_TX_IRQn, CAN3_TX_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_3)
REGISTER_INTERRUPT(CAN3_RX0_IRQn, CAN3_RX0_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_3)
REGISTER_INTERRUPT(CAN3_SCE_IRQn, CAN3_SCE_IRQ_Handler, CAN_INTERRUPT_RATE, FAULT_INTERRUPT_RATE_CAN_3)
if (can_number != 0xffU) {
CAN_TypeDef *CANx = CANIF_FROM_CAN_NUM(can_number);
ret &= can_set_speed(can_number);
ret &= llcan_init(CANx);
// in case there are queued up messages
process_can(can_number);
}
return ret;
}