openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

77 lines
2.4 KiB

# Copied from https://github.com/mlcommons/training/blob/637c82f9e699cd6caf108f92efb2c1d446b630e0/single_stage_detector/ssd/transforms.py
import torch
import torchvision
from torch import nn, Tensor
from torchvision.transforms import functional as F
from torchvision.transforms import transforms as T
from typing import List, Tuple, Dict, Optional
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
from typing import Any
try:
import accimage
except ImportError:
accimage = None
@torch.jit.unused
def _is_pil_image(img: Any) -> bool:
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def get_image_size_tensor(img: Tensor) -> List[int]:
# Returns (w, h) of tensor image
torchvision.transforms._functional_tensor._assert_image_tensor(img)
return [img.shape[-1], img.shape[-2]]
@torch.jit.unused
def get_image_size_pil(img: Any) -> List[int]:
if _is_pil_image(img):
return list(img.size)
raise TypeError("Unexpected type {}".format(type(img)))
def get_image_size(img: Tensor) -> List[int]:
"""Returns the size of an image as [width, height].
Args:
img (PIL Image or Tensor): The image to be checked.
Returns:
List[int]: The image size.
"""
if isinstance(img, torch.Tensor):
return get_image_size_tensor(img)
return get_image_size_pil(img)
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class RandomHorizontalFlip(T.RandomHorizontalFlip):
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if torch.rand(1) < self.p:
image = F.hflip(image)
if target is not None:
width, _ = get_image_size(image)
target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]]
if "masks" in target:
target["masks"] = target["masks"].flip(-1)
return image, target
class ToTensor(nn.Module):
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.to_tensor(image)
return image, target