You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							196 lines
						
					
					
						
							7.6 KiB
						
					
					
				
			
		
		
	
	
							196 lines
						
					
					
						
							7.6 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import math
 | |
| from bisect import bisect_right
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| import common.transformations.coordinates as coord
 | |
| from common.transformations.orientation import (ecef_euler_from_ned,
 | |
|                                                 euler2quat,
 | |
|                                                 ned_euler_from_ecef,
 | |
|                                                 quat2euler,
 | |
|                                                 rotations_from_quats)
 | |
| from selfdrive.locationd.kalman.kalman_helpers import ObservationKind, KalmanError
 | |
| from selfdrive.locationd.kalman.live_kf import (LiveKalman, initial_P_diag,
 | |
|                                                 initial_x)
 | |
| from selfdrive.locationd.kalman.live_model import States
 | |
| from selfdrive.swaglog import cloudlog
 | |
| 
 | |
| SENSOR_DECIMATION = 1  # No decimation
 | |
| 
 | |
| 
 | |
| class Localizer():
 | |
|   def __init__(self, disabled_logs=[], dog=None):
 | |
|     self.kf = LiveKalman()
 | |
|     self.reset_kalman()
 | |
|     self.max_age = .2  # seconds
 | |
|     self.disabled_logs = disabled_logs
 | |
| 
 | |
|   def liveLocationMsg(self, time):
 | |
|     fix = messaging.log.LiveLocationData.new_message()
 | |
| 
 | |
|     predicted_state = self.kf.x
 | |
| 
 | |
|     fix_ecef = predicted_state[States.ECEF_POS]
 | |
|     fix_pos_geo = coord.ecef2geodetic(fix_ecef)
 | |
|     fix.lat = float(fix_pos_geo[0])
 | |
|     fix.lon = float(fix_pos_geo[1])
 | |
|     fix.alt = float(fix_pos_geo[2])
 | |
| 
 | |
|     fix.speed = float(np.linalg.norm(predicted_state[States.ECEF_VELOCITY]))
 | |
| 
 | |
|     orientation_ned_euler = ned_euler_from_ecef(fix_ecef, quat2euler(predicted_state[States.ECEF_ORIENTATION]))
 | |
|     fix.roll = math.degrees(orientation_ned_euler[0])
 | |
|     fix.pitch = math.degrees(orientation_ned_euler[1])
 | |
|     fix.heading = math.degrees(orientation_ned_euler[2])
 | |
| 
 | |
|     fix.gyro = [float(predicted_state[10]), float(predicted_state[11]), float(predicted_state[12])]
 | |
|     fix.accel = [float(predicted_state[19]), float(predicted_state[20]), float(predicted_state[21])]
 | |
| 
 | |
|     local_vel = rotations_from_quats(predicted_state[States.ECEF_ORIENTATION]).T.dot(predicted_state[States.ECEF_VELOCITY])
 | |
|     fix.pitchCalibration = math.degrees(math.atan2(local_vel[2], local_vel[0]))
 | |
|     fix.yawCalibration = math.degrees(math.atan2(local_vel[1], local_vel[0]))
 | |
| 
 | |
|     #fix.imuFrame = [(180/np.pi)*float(predicted_state[23]), (180/np.pi)*float(predicted_state[24]), (180/np.pi)*float(predicted_state[25])]
 | |
|     return fix
 | |
| 
 | |
|   def update_kalman(self, time, kind, meas):
 | |
|     idx = bisect_right([x[0] for x in self.observation_buffer], time)
 | |
|     self.observation_buffer.insert(idx, (time, kind, meas))
 | |
|     while len(self.observation_buffer) > 0 and self.observation_buffer[-1][0] - self.observation_buffer[0][0] > self.max_age:
 | |
|       if self.filter_ready:
 | |
|         try:
 | |
|           self.kf.predict_and_observe(*self.observation_buffer.pop(0))
 | |
|         except KalmanError:
 | |
|           cloudlog.error("Error in predict and observe, kalman reset")
 | |
|           self.reset_kalman()
 | |
|       else:
 | |
|         self.observation_buffer.pop(0)
 | |
| 
 | |
|   def handle_gps(self, current_time, log):
 | |
|     converter = coord.LocalCoord.from_geodetic([log.latitude, log.longitude, log.altitude])
 | |
|     fix_ecef = converter.ned2ecef([0, 0, 0])
 | |
| 
 | |
|     # TODO initing with bad bearing not allowed, maybe not bad?
 | |
|     if not self.filter_ready and log.speed > 5:
 | |
|       self.filter_ready = True
 | |
|       initial_ecef = fix_ecef
 | |
|       gps_bearing = math.radians(log.bearing)
 | |
|       initial_pose_ecef = ecef_euler_from_ned(initial_ecef, [0, 0, gps_bearing])
 | |
|       initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
 | |
|       gps_speed = log.speed
 | |
|       quat_uncertainty = 0.2**2
 | |
|       initial_pose_ecef_quat = euler2quat(initial_pose_ecef)
 | |
| 
 | |
|       initial_state = initial_x
 | |
|       initial_covs_diag = initial_P_diag
 | |
| 
 | |
|       initial_state[States.ECEF_POS] = initial_ecef
 | |
|       initial_state[States.ECEF_ORIENTATION] = initial_pose_ecef_quat
 | |
|       initial_state[States.ECEF_VELOCITY] = rotations_from_quats(initial_pose_ecef_quat).dot(np.array([gps_speed, 0, 0]))
 | |
| 
 | |
|       initial_covs_diag[States.ECEF_POS_ERR] = 10**2
 | |
|       initial_covs_diag[States.ECEF_ORIENTATION_ERR] = quat_uncertainty
 | |
|       initial_covs_diag[States.ECEF_VELOCITY_ERR] = 1**2
 | |
|       self.kf.init_state(initial_state, covs=np.diag(initial_covs_diag), filter_time=current_time)
 | |
|       cloudlog.info("Filter initialized")
 | |
| 
 | |
|     elif self.filter_ready:
 | |
|       self.update_kalman(current_time, ObservationKind.ECEF_POS, fix_ecef)
 | |
|       gps_est_error = np.sqrt((self.kf.x[0] - fix_ecef[0])**2 +
 | |
|                               (self.kf.x[1] - fix_ecef[1])**2 +
 | |
|                               (self.kf.x[2] - fix_ecef[2])**2)
 | |
|       if gps_est_error > 50:
 | |
|         cloudlog.error("Locationd vs ubloxLocation difference too large, kalman reset")
 | |
|         self.reset_kalman()
 | |
| 
 | |
|   def handle_car_state(self, current_time, log):
 | |
|     self.speed_counter += 1
 | |
| 
 | |
|     if self.speed_counter % SENSOR_DECIMATION == 0:
 | |
|       self.update_kalman(current_time, ObservationKind.ODOMETRIC_SPEED, log.vEgo)
 | |
|       if log.carState.vEgo == 0:
 | |
|         self.update_kalman(current_time, ObservationKind.NO_ROT, [0, 0, 0])
 | |
| 
 | |
|   def handle_cam_odo(self, current_time, log):
 | |
|     self.update_kalman(current_time,
 | |
|                        ObservationKind.CAMERA_ODO_ROTATION,
 | |
|                        np.concatenate([log.rot, log.rotStd]))
 | |
|     self.update_kalman(current_time,
 | |
|                        ObservationKind.CAMERA_ODO_TRANSLATION,
 | |
|                        np.concatenate([log.trans, log.transStd]))
 | |
| 
 | |
|   def handle_sensors(self, current_time, log):
 | |
|     # TODO does not yet account for double sensor readings in the log
 | |
|     for sensor_reading in log:
 | |
|       # Gyro Uncalibrated
 | |
|       if sensor_reading.sensor == 5 and sensor_reading.type == 16:
 | |
|         self.gyro_counter += 1
 | |
|         if self.gyro_counter % SENSOR_DECIMATION == 0:
 | |
|           if max(abs(self.kf.x[States.IMU_OFFSET])) > 0.07:
 | |
|             cloudlog.info('imu frame angles exceeded, correcting')
 | |
|             self.update_kalman(current_time, ObservationKind.IMU_FRAME, [0, 0, 0])
 | |
| 
 | |
|           v = sensor_reading.gyroUncalibrated.v
 | |
|           self.update_kalman(current_time, ObservationKind.PHONE_GYRO, [-v[2], -v[1], -v[0]])
 | |
| 
 | |
|       # Accelerometer
 | |
|       if sensor_reading.sensor == 1 and sensor_reading.type == 1:
 | |
|         self.acc_counter += 1
 | |
|         if self.acc_counter % SENSOR_DECIMATION == 0:
 | |
|           v = sensor_reading.acceleration.v
 | |
|           self.update_kalman(current_time, ObservationKind.PHONE_ACCEL, [-v[2], -v[1], -v[0]])
 | |
| 
 | |
|   def reset_kalman(self):
 | |
|     self.filter_time = None
 | |
|     self.filter_ready = False
 | |
|     self.observation_buffer = []
 | |
| 
 | |
|     self.gyro_counter = 0
 | |
|     self.acc_counter = 0
 | |
|     self.speed_counter = 0
 | |
| 
 | |
| 
 | |
| def locationd_thread(sm, pm, disabled_logs=[]):
 | |
|   if sm is None:
 | |
|     sm = messaging.SubMaster(['gpsLocationExternal', 'sensorEvents', 'cameraOdometry'])
 | |
|   if pm is None:
 | |
|     pm = messaging.PubMaster(['liveLocation'])
 | |
| 
 | |
|   localizer = Localizer(disabled_logs=disabled_logs)
 | |
| 
 | |
|   while True:
 | |
|     sm.update()
 | |
| 
 | |
|     for sock, updated in sm.updated.items():
 | |
|       if updated:
 | |
|         t = sm.logMonoTime[sock] * 1e-9
 | |
|         if sock == "sensorEvents":
 | |
|           localizer.handle_sensors(t, sm[sock])
 | |
|         elif sock == "gpsLocationExternal":
 | |
|           localizer.handle_gps(t, sm[sock])
 | |
|         elif sock == "carState":
 | |
|           localizer.handle_car_state(t, sm[sock])
 | |
|         elif sock == "cameraOdometry":
 | |
|           localizer.handle_cam_odo(t, sm[sock])
 | |
| 
 | |
|     if localizer.filter_ready and sm.updated['gpsLocationExternal']:
 | |
|       t = sm.logMonoTime['gpsLocationExternal']
 | |
|       msg = messaging.new_message()
 | |
|       msg.logMonoTime = t
 | |
| 
 | |
|       msg.init('liveLocation')
 | |
|       msg.liveLocation = localizer.liveLocationMsg(t * 1e-9)
 | |
| 
 | |
|       pm.send('liveLocation', msg)
 | |
| 
 | |
| 
 | |
| def main(sm=None, pm=None):
 | |
|   locationd_thread(sm, pm)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   import os
 | |
|   os.environ["OMP_NUM_THREADS"] = "1"
 | |
|   main()
 | |
| 
 |