openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

84 lines
3.0 KiB

import math
import numpy as np
from common.numpy_fast import clip
from common.realtime import DT_CTRL
from cereal import log
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
class LatControlLQR(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.scale = CP.lateralTuning.lqr.scale
self.ki = CP.lateralTuning.lqr.ki
self.A = np.array(CP.lateralTuning.lqr.a).reshape((2, 2))
self.B = np.array(CP.lateralTuning.lqr.b).reshape((2, 1))
self.C = np.array(CP.lateralTuning.lqr.c).reshape((1, 2))
self.K = np.array(CP.lateralTuning.lqr.k).reshape((1, 2))
self.L = np.array(CP.lateralTuning.lqr.l).reshape((2, 1))
self.dc_gain = CP.lateralTuning.lqr.dcGain
self.x_hat = np.array([[0], [0]])
self.i_unwind_rate = 0.3 * DT_CTRL
self.i_rate = 1.0 * DT_CTRL
self.reset()
def reset(self):
super().reset()
self.i_lqr = 0.0
def update(self, active, CS, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk):
lqr_log = log.ControlsState.LateralLQRState.new_message()
torque_scale = (0.45 + CS.vEgo / 60.0)**2 # Scale actuator model with speed
# Subtract offset. Zero angle should correspond to zero torque
steering_angle_no_offset = CS.steeringAngleDeg - params.angleOffsetAverageDeg
desired_angle = math.degrees(VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll))
instant_offset = params.angleOffsetDeg - params.angleOffsetAverageDeg
desired_angle += instant_offset # Only add offset that originates from vehicle model errors
lqr_log.steeringAngleDesiredDeg = desired_angle
# Update Kalman filter
angle_steers_k = float(self.C.dot(self.x_hat))
e = steering_angle_no_offset - angle_steers_k
self.x_hat = self.A.dot(self.x_hat) + self.B.dot(CS.steeringTorqueEps / torque_scale) + self.L.dot(e)
if CS.vEgo < MIN_STEER_SPEED or not active:
lqr_log.active = False
lqr_output = 0.
output_steer = 0.
self.reset()
else:
lqr_log.active = True
# LQR
u_lqr = float(desired_angle / self.dc_gain - self.K.dot(self.x_hat))
lqr_output = torque_scale * u_lqr / self.scale
# Integrator
if CS.steeringPressed:
self.i_lqr -= self.i_unwind_rate * float(np.sign(self.i_lqr))
else:
error = desired_angle - angle_steers_k
i = self.i_lqr + self.ki * self.i_rate * error
control = lqr_output + i
if (error >= 0 and (control <= self.steer_max or i < 0.0)) or \
(error <= 0 and (control >= -self.steer_max or i > 0.0)):
self.i_lqr = i
output_steer = lqr_output + self.i_lqr
output_steer = clip(output_steer, -self.steer_max, self.steer_max)
lqr_log.steeringAngleDeg = angle_steers_k
lqr_log.i = self.i_lqr
lqr_log.output = output_steer
lqr_log.lqrOutput = lqr_output
lqr_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
return output_steer, desired_angle, lqr_log