openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

270 lines
5.8 KiB

# ifndef CPPAD_UTILITY_NEAR_EQUAL_HPP
# define CPPAD_UTILITY_NEAR_EQUAL_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
Eclipse Public License Version 1.0.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
/*
$begin NearEqual$$
$spell
cppad.hpp
sqrt
cout
endl
Microsoft
std
Cpp
namespace
const
bool
$$
$section Determine if Two Values Are Nearly Equal$$
$mindex NearEqual near absolute difference relative$$
$head Syntax$$
$codei%# include <cppad/utility/near_equal.hpp>
%$$
$icode%b% = NearEqual(%x%, %y%, %r%, %a%)%$$
$head Purpose$$
Returns true,
if $icode x$$ and $icode y$$ are nearly equal,
and false otherwise.
$head x$$
The argument $icode x$$
has one of the following possible prototypes
$codei%
const %Type% &%x%,
const std::complex<%Type%> &%x%,
%$$
$head y$$
The argument $icode y$$
has one of the following possible prototypes
$codei%
const %Type% &%y%,
const std::complex<%Type%> &%y%,
%$$
$head r$$
The relative error criteria $icode r$$ has prototype
$codei%
const %Type% &%r%
%$$
It must be greater than or equal to zero.
The relative error condition is defined as:
$latex \[
| x - y | \leq r ( |x| + |y| )
\] $$
$head a$$
The absolute error criteria $icode a$$ has prototype
$codei%
const %Type% &%a%
%$$
It must be greater than or equal to zero.
The absolute error condition is defined as:
$latex \[
| x - y | \leq a
\] $$
$head b$$
The return value $icode b$$ has prototype
$codei%
bool %b%
%$$
If either $icode x$$ or $icode y$$ is infinite or not a number,
the return value is false.
Otherwise, if either the relative or absolute error
condition (defined above) is satisfied, the return value is true.
Otherwise, the return value is false.
$head Type$$
The type $icode Type$$ must be a
$cref NumericType$$.
The routine $cref CheckNumericType$$ will generate
an error message if this is not the case.
In addition, the following operations must be defined objects
$icode a$$ and $icode b$$ of type $icode Type$$:
$table
$bold Operation$$ $cnext
$bold Description$$ $rnext
$icode%a% <= %b%$$ $cnext
less that or equal operator (returns a $code bool$$ object)
$tend
$head Include Files$$
The file $code cppad/near_equal.hpp$$ is included by $code cppad/cppad.hpp$$
but it can also be included separately with out the rest of
the $code CppAD$$ routines.
$head Example$$
$children%
example/utility/near_equal.cpp
%$$
The file $cref near_equal.cpp$$ contains an example
and test of $code NearEqual$$.
It return true if it succeeds and false otherwise.
$head Exercise$$
Create and run a program that contains the following code:
$codep
using std::complex;
using std::cout;
using std::endl;
complex<double> one(1., 0), i(0., 1);
complex<double> x = one / i;
complex<double> y = - i;
double r = 1e-12;
double a = 0;
bool ok = CppAD::NearEqual(x, y, r, a);
if( ok )
cout << "Ok" << endl;
else cout << "Error" << endl;
$$
$end
*/
# include <limits>
# include <complex>
# include <cppad/core/cppad_assert.hpp>
# include <cppad/utility/check_numeric_type.hpp>
namespace CppAD { // Begin CppAD namespace
// determine if both x and y are finite values
template <class Type>
bool near_equal_isfinite(const Type &x , const Type &y)
{ Type infinity = Type( std::numeric_limits<double>::infinity() );
// handle bug where some compilers return true for nan == nan
bool xNan = x != x;
bool yNan = y != y;
// infinite cases
bool xInf = (x == infinity || x == - infinity);
bool yInf = (x == infinity || x == - infinity);
return ! (xNan | yNan | xInf | yInf);
}
template <class Type>
bool NearEqual(const Type &x, const Type &y, const Type &r, const Type &a)
{
CheckNumericType<Type>();
Type zero(0);
CPPAD_ASSERT_KNOWN(
zero <= r,
"Error in NearEqual: relative error is less than zero"
);
CPPAD_ASSERT_KNOWN(
zero <= a,
"Error in NearEqual: absolute error is less than zero"
);
// check for special cases
if( ! CppAD::near_equal_isfinite(x, y) )
return false;
Type ax = x;
if( ax <= zero )
ax = - ax;
Type ay = y;
if( ay <= zero )
ay = - ay;
Type ad = x - y;
if( ad <= zero )
ad = - ad;
if( ad <= a )
return true;
if( ad <= r * (ax + ay) )
return true;
return false;
}
template <class Type>
bool NearEqual(
const std::complex<Type> &x ,
const std::complex<Type> &y ,
const Type &r ,
const Type & a )
{
CheckNumericType<Type>();
# ifndef NDEBUG
Type zero(0);
# endif
CPPAD_ASSERT_KNOWN(
zero <= r,
"Error in NearEqual: relative error is less than zero"
);
CPPAD_ASSERT_KNOWN(
zero <= a,
"Error in NearEqual: absolute error is less than zero"
);
// check for special cases
if( ! CppAD::near_equal_isfinite(x.real(), x.imag()) )
return false;
if( ! CppAD::near_equal_isfinite(y.real(), y.imag()) )
return false;
std::complex<Type> d = x - y;
Type ad = std::abs(d);
if( ad <= a )
return true;
Type ax = std::abs(x);
Type ay = std::abs(y);
if( ad <= r * (ax + ay) )
return true;
return false;
}
template <class Type>
bool NearEqual(
const std::complex<Type> &x ,
const Type &y ,
const Type &r ,
const Type & a )
{
return NearEqual(x, std::complex<Type>(y, Type(0)), r, a);
}
template <class Type>
bool NearEqual(
const Type &x ,
const std::complex<Type> &y ,
const Type &r ,
const Type & a )
{
return NearEqual(std::complex<Type>(x, Type(0)), y, r, a);
}
} // END CppAD namespace
# endif