openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

914 lines
24 KiB

# ifndef CPPAD_UTILITY_VECTOR_HPP
# define CPPAD_UTILITY_VECTOR_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
Eclipse Public License Version 1.0.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
/*
$begin CppAD_vector$$
$spell
rvalues
thread_alloc
cppad.hpp
Bool
resize
cout
endl
std
Cpp
const
vec
ostream
elem
$$
$section The CppAD::vector Template Class$$
$mindex vector CppAD [] push thread_alloc$$
$head Syntax$$
$code%# include <cppad/utility/vector.hpp>$$
$head Description$$
The include file $code cppad/vector.hpp$$ defines the
vector template class $code CppAD::vector$$.
This is a $cref SimpleVector$$ template class and in addition
it has the features listed below:
$head Include$$
The file $code cppad/vector.hpp$$ is included by $code cppad/cppad.hpp$$
but it can also be included separately with out the rest of the
CppAD include files.
$head capacity$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$,
and $icode cap$$ is a $code size_t$$ object,
$codei%
%cap% = %x%.capacity()
%$$
set $icode cap$$ to the number of $icode Scalar$$ objects that
could fit in the memory currently allocated for $icode x$$.
Note that
$codei%
%x%.size() <= %x%.capacity()
%$$
$head Assignment$$
If $icode x$$ and $icode y$$ are
$codei%CppAD::vector<%Scalar%>%$$ objects,
$codei%
%y% = %x%
%$$
has all the properties listed for a
$cref/simple vector assignment/SimpleVector/Assignment/$$
plus the following:
$subhead Check Size$$
The $code CppAD::vector$$ template class will check that
the size of $icode x$$ is either zero or the size of $icode y$$
before doing the assignment.
If this is not the case, $code CppAD::vector$$ will use
$cref ErrorHandler$$
to generate an appropriate error report.
Allowing for assignment to a vector with size zero makes the following
code work:
$codei%
CppAD::vector<%Scalar%> %y%;
%y% = %x%;
%$$
$subhead Return Reference$$
A reference to the vector $icode y$$ is returned.
An example use of this reference is in multiple assignments of the form
$codei%
%z% = %y% = %x%
%$$
$subhead Move Semantics$$
If the C++ compiler supports move semantic rvalues using the $code &&$$
syntax, then it will be used during the vector assignment statement.
This means that return values and other temporaries are not be copied,
but rather pointers are transferred.
$head Element Access$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
and $icode i$$ has type $code size_t$$,
$codei%
%x%[%i%]
%$$
has all the properties listed for a
$cref/simple vector element access/SimpleVector/Element Access/$$
plus the following:
$pre
$$
The object $icode%x%[%i%]%$$ has type $icode Scalar$$
(is not possibly a different type that can be converted to $icode Scalar$$).
$pre
$$
If $icode i$$ is not less than the size of the $icode x$$,
$code CppAD::vector$$ will use
$cref ErrorHandler$$
to generate an appropriate error report.
$head push_back$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
with size equal to $icode n$$ and
$icode s$$ has type $icode Scalar$$,
$codei%
%x%.push_back(%s%)
%$$
extends the vector $icode x$$ so that its new size is $icode n$$ plus one
and $icode%x%[%n%]%$$ is equal to $icode s$$
(equal in the sense of the $icode Scalar$$ assignment operator).
$head push_vector$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
with size equal to $icode n$$ and
$icode v$$ is a $cref/simple vector/SimpleVector/$$
with elements of type $icode Scalar$$ and size $icode m$$,
$codei%
%x%.push_vector(%v%)
%$$
extends the vector $icode x$$ so that its new size is $icode%n%+%m%$$
and $icode%x%[%n% + %i%]%$$ is equal to $icode%v%[%i%]%$$
for $icode%i = 1 , ... , m-1%$$
(equal in the sense of the $icode Scalar$$ assignment operator).
$head Output$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
and $icode os$$ is an $code std::ostream$$,
and the operation
$codei%
%os% << %x%
%$$
will output the vector $icode x$$ to the standard
output stream $icode os$$.
The elements of $icode x$$ are enclosed at the beginning by a
$code {$$ character,
they are separated by $code ,$$ characters,
and they are enclosed at the end by $code }$$ character.
It is assumed by this operation that if $icode e$$
is an object with type $icode Scalar$$,
$codei%
%os% << %e%
%$$
will output the value $icode e$$ to the standard
output stream $icode os$$.
$head resize$$
The call $icode%x%.resize(%n%)%$$ set the size of $icode x$$ equal to
$icode n$$.
If $icode%n% <= %x%.capacity()%$$,
no memory is freed or allocated, the capacity of $icode x$$ does not change,
and the data in $icode x$$ is preserved.
If $icode%n% > %x%.capacity()%$$,
new memory is allocated and the data in $icode x$$ is lost
(not copied to the new memory location).
$head clear$$
All memory allocated for the vector is freed
and both its size and capacity are set to zero.
This can be useful when using very large vectors
and when checking for memory leaks (and there are global vectors)
see the $cref/memory/CppAD_vector/Memory and Parallel Mode/$$ discussion.
$head data$$
If $icode x$$ is a $codei%CppAD::vector<%Scalar%>%$$ object
$codei%
%x%.data()
%$$
returns a pointer to a $icode Scalar$$ object such that for
$codei%0 <= %i% < %x%.size()%$$,
$icode%x%[%i%]%$$ and $icode%x%.data()[%i%]%$$
are the same $icode Scalar$$ object.
If $icode x$$ is $code const$$, the pointer is $code const$$.
If $icode%x%.capacity()%$$ is zero, the value of the pointer is not defined.
The pointer may no longer be valid after the following operations on
$icode x$$:
its destructor,
$code clear$$,
$code resize$$,
$code push_back$$,
$code push_vector$$,
assignment to another vector when original size of $icode x$$ is zero.
$head vectorBool$$
The file $code <cppad/vector.hpp>$$ also defines the class
$code CppAD::vectorBool$$.
This has the same specifications as $code CppAD::vector<bool>$$
with the following exceptions:
$subhead Memory$$
The class $code vectorBool$$ conserves on memory
(on the other hand, $code CppAD::vector<bool>$$ is expected to be faster
than $code vectorBool$$).
$subhead bit_per_unit$$
The static function call
$codei%
%s% = vectorBool::bit_per_unit()
%$$
returns the $code size_t$$ value $icode s$$
which is equal to the number of boolean values (bits) that are
packed into one operational unit.
For example, a logical $code or$$
acts on this many boolean values with one operation.
$subhead data$$
The $cref/data/CppAD_vector/data/$$ function is not supported by
$code vectorBool$$.
$subhead Output$$
The $code CppAD::vectorBool$$ output operator
prints each boolean value as
a $code 0$$ for false,
a $code 1$$ for true,
and does not print any other output; i.e.,
the vector is written a long sequence of zeros and ones with no
surrounding $code {$$, $code }$$ and with no separating commas or spaces.
$subhead Element Type$$
If $icode x$$ has type $code vectorBool$$
and $icode i$$ has type $code size_t$$,
the element access value $icode%x%[%i%]%$$ has an unspecified type,
referred to here as $icode elementType$$, that supports the following
operations:
$list number$$
$icode elementType$$ can be converted to $code bool$$; e.g.
the following syntax is supported:
$codei%
static_cast<bool>( %x%[%i%] )
%$$
$lnext
$icode elementType$$ supports the assignment operator $code =$$ where the
right hand side is a $code bool$$ or an $icode elementType$$ object; e.g.,
if $icode y$$ has type $code bool$$, the following syntax is supported:
$codei%
%x%[%i%] = %y%
%$$
$lnext
The result of an assignment to an $icode elementType$$
also has type $icode elementType$$.
Thus, if $icode z$$ has type $code bool$$, the following syntax is supported:
$codei%
%z% = %x%[%i%] = %y%
%$$
$lend
$head Memory and Parallel Mode$$
These vectors use the multi-threaded fast memory allocator
$cref thread_alloc$$:
$list number$$
The routine $cref/parallel_setup/ta_parallel_setup/$$ must
be called before these vectors can be used
$cref/in parallel/ta_in_parallel/$$.
$lnext
Using these vectors affects the amount of memory
$cref/in_use/ta_inuse/$$ and $cref/available/ta_available/$$.
$lnext
Calling $cref/clear/CppAD_vector/clear/$$,
makes the corresponding memory available (though $code thread_alloc$$)
to the current thread.
$lnext
Available memory
can then be completely freed using $cref/free_available/ta_free_available/$$.
$lend
$head Example$$
$children%
example/utility/cppad_vector.cpp%
example/utility/vector_bool.cpp
%$$
The files
$cref cppad_vector.cpp$$ and
$cref vector_bool.cpp$$ each
contain an example and test of this template class.
They return true if they succeed and false otherwise.
$head Exercise$$
Create and run a program that contains the following code:
$codep
CppAD::vector<double> x(3);
size_t i;
for(i = 0; i < 3; i++)
x[i] = 4. - i;
std::cout << "x = " << x << std::endl;
$$
$end
$end
------------------------------------------------------------------------
*/
# include <cstddef>
# include <iostream>
# include <limits>
# include <cppad/core/cppad_assert.hpp>
# include <cppad/utility/check_simple_vector.hpp>
# include <cppad/utility/thread_alloc.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
/*!
\file vector.hpp
File used to define CppAD::vector and CppAD::vectorBool
*/
// ---------------------------------------------------------------------------
/*!
The CppAD Simple Vector template class.
*/
template <class Type>
class vector {
private:
/// maximum number of Type elements current allocation can hold
size_t capacity_;
/// number of Type elements currently in this vector
size_t length_;
/// pointer to the first type elements
/// (not defined and should not be used when capacity_ = 0)
Type* data_;
/// delete data pointer
void delete_data(Type* data_ptr)
{ thread_alloc::delete_array(data_ptr); }
public:
/// type of the elements in the vector
typedef Type value_type;
/// default constructor sets capacity_ = length_ = data_ = 0
inline vector(void)
: capacity_(0), length_(0), data_(CPPAD_NULL)
{ }
/// sizing constructor
inline vector(
/// number of elements in this vector
size_t n
) : capacity_(0), length_(0), data_(CPPAD_NULL)
{ resize(n); }
/// copy constructor
inline vector(
/// the *this vector will be a copy of \c x
const vector& x
) : capacity_(0), length_(0), data_(CPPAD_NULL)
{ resize(x.length_);
// copy the data
for(size_t i = 0; i < length_; i++)
data_[i] = x.data_[i];
}
/// destructor
~vector(void)
{ if( capacity_ > 0 )
delete_data(data_);
}
/// maximum number of elements current allocation can store
inline size_t capacity(void) const
{ return capacity_; }
/// number of elements currently in this vector.
inline size_t size(void) const
{ return length_; }
/// raw pointer to the data
inline Type* data(void)
{ return data_; }
/// const raw pointer to the data
inline const Type* data(void) const
{ return data_; }
/// change the number of elements in this vector.
inline void resize(
/// new number of elements for this vector
size_t n
)
{ length_ = n;
// check if we must allocate new memory
if( capacity_ < length_ )
{
// check if there is old memory to be freed
if( capacity_ > 0 )
delete_data(data_);
// get new memory and set capacity
data_ = thread_alloc::create_array<Type>(length_, capacity_);
}
}
/// free memory and set number of elements to zero
inline void clear(void)
{ length_ = 0;
// check if there is old memory to be freed
if( capacity_ > 0 )
delete_data(data_);
capacity_ = 0;
}
/// vector assignment operator
inline vector& operator=(
/// right hand size of the assingment operation
const vector& x
)
{ size_t i;
// If original lenght is zero, then resize it.
// Otherwise a length mismatch is an error.
if( length_ == 0 )
resize( x.length_ );
CPPAD_ASSERT_KNOWN(
length_ == x.length_ ,
"vector: size miss match in assignment operation"
);
for(i = 0; i < length_; i++)
data_[i] = x.data_[i];
return *this;
}
# if CPPAD_USE_CPLUSPLUS_2011
/// vector assignment operator with move semantics
inline vector& operator=(
/// right hand size of the assingment operation
vector&& x
)
{ CPPAD_ASSERT_KNOWN(
length_ == x.length_ || (length_ == 0),
"vector: size miss match in assignment operation"
);
if( this != &x )
{ clear();
//
length_ = x.length_;
capacity_ = x.capacity_;
data_ = x.data_;
//
x.length_ = 0;
x.capacity_ = 0;
x.data_ = CPPAD_NULL;
}
return *this;
}
# endif
/// non-constant element access; i.e., we can change this element value
Type& operator[](
/// element index, must be less than length
size_t i
)
{ CPPAD_ASSERT_KNOWN(
i < length_,
"vector: index greater than or equal vector size"
);
return data_[i];
}
/// constant element access; i.e., we cannot change this element value
const Type& operator[](
/// element index, must be less than length
size_t i
) const
{ CPPAD_ASSERT_KNOWN(
i < length_,
"vector: index greater than or equal vector size"
);
return data_[i];
}
/// add an element to the back of this vector
void push_back(
/// value of the element
const Type& s
)
{ // case where no allocation is necessary
if( length_ + 1 <= capacity_ )
{ data_[length_++] = s;
return;
}
CPPAD_ASSERT_UNKNOWN( length_ == capacity_ );
// store old length, capacity and data
size_t old_length = length_;
size_t old_capacity = capacity_;
Type* old_data = data_;
// set the new length, capacity and data
length_ = 0;
capacity_ = 0;
resize(old_length + 1);
// copy old data values
for(size_t i = 0; i < old_length; i++)
data_[i] = old_data[i];
// put the new element in the vector
CPPAD_ASSERT_UNKNOWN( old_length + 1 <= capacity_ );
data_[old_length] = s;
// free old data
if( old_capacity > 0 )
delete_data(old_data);
CPPAD_ASSERT_UNKNOWN( old_length + 1 == length_ );
CPPAD_ASSERT_UNKNOWN( length_ <= capacity_ );
}
/*! add vector to the back of this vector
(we could not use push_back because MS V++ 7.1 did not resolve
to non-template member function when scalar is used.)
*/
template <class Vector>
void push_vector(
/// value of the vector that we are adding
const Vector& v
)
{ CheckSimpleVector<Type, Vector>();
size_t m = v.size();
// case where no allcoation is necessary
if( length_ + m <= capacity_ )
{ for(size_t i = 0; i < m; i++)
data_[length_++] = v[i];
return;
}
// store old length, capacity and data
size_t old_length = length_;
size_t old_capacity = capacity_;
Type* old_data = data_;
// set new length, capacity and data
length_ = 0;
capacity_ = 0;
resize(old_length + m);
// copy old data values
for(size_t i = 0; i < old_length; i++)
data_[i] = old_data[i];
// put the new elements in the vector
CPPAD_ASSERT_UNKNOWN( old_length + m <= capacity_ );
for(size_t i = 0; i < m; i++)
data_[old_length + i] = v[i];
// free old data
if( old_capacity > 0 )
delete_data(old_data);
CPPAD_ASSERT_UNKNOWN( old_length + m == length_ );
CPPAD_ASSERT_UNKNOWN( length_ <= capacity_ );
}
};
/// output a vector
template <class Type>
inline std::ostream& operator << (
/// stream to write the vector to
std::ostream& os ,
/// vector that is output
const CppAD::vector<Type>& vec )
{ size_t i = 0;
size_t n = vec.size();
os << "{ ";
while(i < n)
{ os << vec[i++];
if( i < n )
os << ", ";
}
os << " }";
return os;
}
// ---------------------------------------------------------------------------
/*!
Class that is used to hold a non-constant element of a vector.
*/
class vectorBoolElement {
/// the boolean data is packed with sizeof(UnitType) bits per value
typedef size_t UnitType;
private:
/// pointer to the UnitType value holding this eleemnt
UnitType* unit_;
/// mask for the bit corresponding to this element
/// (all zero except for bit that corresponds to this element)
UnitType mask_;
public:
/// constructor from member values
vectorBoolElement(
/// unit for this element
UnitType* unit ,
/// mask for this element
UnitType mask )
: unit_(unit) , mask_(mask)
{ }
/// constuctor from another element
vectorBoolElement(
/// other element
const vectorBoolElement& e )
: unit_(e.unit_) , mask_(e.mask_)
{ }
/// conversion to a boolean value
operator bool() const
{ return (*unit_ & mask_) != 0; }
/// assignment of this element to a bool
vectorBoolElement& operator=(
/// right hand side for assignment
bool bit
)
{ if(bit)
*unit_ |= mask_;
else *unit_ &= ~mask_;
return *this;
}
/// assignment of this element to another element
vectorBoolElement& operator=(const vectorBoolElement& e)
{ if( *(e.unit_) & e.mask_ )
*unit_ |= mask_;
else *unit_ &= ~mask_;
return *this;
}
};
class vectorBool {
/// the boolean data is packed with sizeof(UnitType) bits per value
typedef size_t UnitType;
private:
/// number of bits packed into each UnitType value in data_
static const size_t bit_per_unit_
= std::numeric_limits<UnitType>::digits;
/// number of UnitType values in data_
size_t n_unit_;
/// number of bits currently stored in this vector
size_t length_;
/// pointer to where the bits are stored
UnitType *data_;
/// minimum number of UnitType values that can store length_ bits
/// (note that this is really a function of length_)
size_t unit_min(void)
{ if( length_ == 0 )
return 0;
return (length_ - 1) / bit_per_unit_ + 1;
}
public:
/// type corresponding to the elements of this vector
/// (note that non-const elements actually use vectorBoolElement)
typedef bool value_type;
// static member function
static size_t bit_per_unit(void)
{ return bit_per_unit_; }
/// default constructor (sets all member data to zero)
inline vectorBool(void) : n_unit_(0), length_(0), data_(CPPAD_NULL)
{ }
/// sizing constructor
inline vectorBool(
/// number of bits in this vector
size_t n
) : n_unit_(0), length_(n), data_(CPPAD_NULL)
{ if( length_ > 0 )
{ // set n_unit and data
size_t min_unit = unit_min();
data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
}
}
/// copy constructor
inline vectorBool(
/// the *this vector will be a copy of \c v
const vectorBool& v
) : n_unit_(0), length_(v.length_), data_(CPPAD_NULL)
{ if( length_ > 0 )
{ // set n_unit and data
size_t min_unit = unit_min();
data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
// copy values using UnitType assignment operator
CPPAD_ASSERT_UNKNOWN( min_unit <= v.n_unit_ );
size_t i;
for(i = 0; i < min_unit; i++)
data_[i] = v.data_[i];
}
}
/// destructor
~vectorBool(void)
{ if( n_unit_ > 0 )
thread_alloc::delete_array(data_);
}
/// number of elements in this vector
inline size_t size(void) const
{ return length_; }
/// maximum number of elements current allocation can store
inline size_t capacity(void) const
{ return n_unit_ * bit_per_unit_; }
/// change number of elements in this vector
inline void resize(
/// new number of elements for this vector
size_t n
)
{ length_ = n;
// check if we can use the current memory
size_t min_unit = unit_min();
if( n_unit_ >= min_unit )
return;
// check if there is old memory to be freed
if( n_unit_ > 0 )
thread_alloc::delete_array(data_);
// get new memory and set n_unit
data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
}
/// free memory and set number of elements to zero
inline void clear(void)
{ length_ = 0;
// check if there is old memory to be freed
if( n_unit_ > 0 )
thread_alloc::delete_array(data_);
n_unit_ = 0;
}
/// vector assignment operator
inline vectorBool& operator=(
/// right hand size of the assingment operation
const vectorBool& v
)
{ size_t i;
// If original lenght is zero, then resize it.
// Otherwise a length mismatch is an error.
if( length_ == 0 )
resize( v.length_ );
CPPAD_ASSERT_KNOWN(
length_ == v.length_ ,
"vectorBool: size miss match in assignment operation"
);
size_t min_unit = unit_min();
CPPAD_ASSERT_UNKNOWN( min_unit <= n_unit_ );
CPPAD_ASSERT_UNKNOWN( min_unit <= v.n_unit_ );
for(i = 0; i < min_unit; i++)
data_[i] = v.data_[i];
return *this;
}
# if CPPAD_USE_CPLUSPLUS_2011
/// vector assignment operator with move semantics
inline vectorBool& operator=(
/// right hand size of the assingment operation
vectorBool&& x
)
{ CPPAD_ASSERT_KNOWN(
length_ == x.length_ || (length_ == 0),
"vectorBool: size miss match in assignment operation"
);
if( this != &x )
{ clear();
//
length_ = x.length_;
n_unit_ = x.n_unit_;
data_ = x.data_;
//
x.length_ = 0;
x.n_unit_ = 0;
x.data_ = CPPAD_NULL;
}
return *this;
}
# endif
/// non-constant element access; i.e., we can change this element value
vectorBoolElement operator[](
/// element index, must be less than length
size_t k
)
{ size_t i, j;
CPPAD_ASSERT_KNOWN(
k < length_,
"vectorBool: index greater than or equal vector size"
);
i = k / bit_per_unit_;
j = k - i * bit_per_unit_;
return vectorBoolElement(data_ + i , UnitType(1) << j );
}
/// constant element access; i.e., we cannot change this element value
bool operator[](size_t k) const
{ size_t i, j;
UnitType unit, mask;
CPPAD_ASSERT_KNOWN(
k < length_,
"vectorBool: index greater than or equal vector size"
);
i = k / bit_per_unit_;
j = k - i * bit_per_unit_;
unit = data_[i];
mask = UnitType(1) << j;
return (unit & mask) != 0;
}
/// add an element to the back of this vector
void push_back(
/// value of the element
bool bit
)
{ CPPAD_ASSERT_UNKNOWN( unit_min() <= n_unit_ );
size_t i, j;
UnitType mask;
if( length_ + 1 > n_unit_ * bit_per_unit_ )
{ CPPAD_ASSERT_UNKNOWN( unit_min() == n_unit_ );
// store old n_unit and data values
size_t old_n_unit = n_unit_;
UnitType* old_data = data_;
// set new n_unit and data values
data_ = thread_alloc::create_array<UnitType>(n_unit_+1, n_unit_);
// copy old data values
for(i = 0; i < old_n_unit; i++)
data_[i] = old_data[i];
// free old data
if( old_n_unit > 0 )
thread_alloc::delete_array(old_data);
}
i = length_ / bit_per_unit_;
j = length_ - i * bit_per_unit_;
mask = UnitType(1) << j;
if( bit )
data_[i] |= mask;
else data_[i] &= ~mask;
length_++;
}
/// add vector to the back of this vector
template <class Vector>
void push_vector(
/// value of the vector that we are adding
const Vector& v
)
{ CheckSimpleVector<bool, Vector>();
size_t min_unit = unit_min();
CPPAD_ASSERT_UNKNOWN( length_ <= n_unit_ * bit_per_unit_ );
// some temporaries
size_t i, j, k, ell;
UnitType mask;
bool bit;
// store old length
size_t old_length = length_;
// new length and minium number of units;
length_ = length_ + v.size();
min_unit = unit_min();
if( length_ >= n_unit_ * bit_per_unit_ )
{ // store old n_unit and data value
size_t old_n_unit = n_unit_;
UnitType* old_data = data_;
// set new n_unit and data values
data_ = thread_alloc::create_array<UnitType>(min_unit, n_unit_);
// copy old data values
for(i = 0; i < old_n_unit; i++)
data_[i] = old_data[i];
// free old data
if( old_n_unit > 0 )
thread_alloc::delete_array(old_data);
}
ell = old_length;
for(k = 0; k < v.size(); k++)
{
i = ell / bit_per_unit_;
j = ell - i * bit_per_unit_;
bit = v[k];
mask = UnitType(1) << j;
if( bit )
data_[i] |= mask;
else data_[i] &= ~mask;
ell++;
}
CPPAD_ASSERT_UNKNOWN( length_ == ell );
CPPAD_ASSERT_UNKNOWN( length_ <= n_unit_ * bit_per_unit_ );
}
};
/// output a vector
inline std::ostream& operator << (
/// steam to write the vector to
std::ostream& os ,
/// vector that is output
const vectorBool& v )
{ size_t i = 0;
size_t n = v.size();
while(i < n)
os << v[i++];
return os;
}
} // END_CPPAD_NAMESPACE
# endif