openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

78 lines
3.0 KiB

import numpy as np
from openpilot.common.transformations.orientation import rot_from_euler
from openpilot.common.transformations.camera import (
FULL_FRAME_SIZE, get_view_frame_from_calib_frame, view_frame_from_device_frame,
eon_fcam_intrinsics, tici_ecam_intrinsics, tici_fcam_intrinsics)
# segnet
SEGNET_SIZE = (512, 384)
def get_segnet_frame_from_camera_frame(segnet_size=SEGNET_SIZE, full_frame_size=FULL_FRAME_SIZE):
return np.array([[float(segnet_size[0]) / full_frame_size[0], 0.0],
[0.0, float(segnet_size[1]) / full_frame_size[1]]])
segnet_frame_from_camera_frame = get_segnet_frame_from_camera_frame() # xx
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_fl = 910.0
medmodel_intrinsics = np.array([
[medmodel_fl, 0.0, 0.5 * MEDMODEL_INPUT_SIZE[0]],
[0.0, medmodel_fl, MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# BIG model
BIGMODEL_INPUT_SIZE = (1024, 512)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_fl = 910.0
bigmodel_intrinsics = np.array([
[bigmodel_fl, 0.0, 0.5 * BIGMODEL_INPUT_SIZE[0]],
[0.0, bigmodel_fl, 256 + MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# SBIG model (big model with the size of small model)
SBIGMODEL_INPUT_SIZE = (512, 256)
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
sbigmodel_fl = 455.0
sbigmodel_intrinsics = np.array([
[sbigmodel_fl, 0.0, 0.5 * SBIGMODEL_INPUT_SIZE[0]],
[0.0, sbigmodel_fl, 0.5 * (256 + MEDMODEL_CY)],
[0.0, 0.0, 1.0]])
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
sbigmodel_frame_from_calib_frame = np.dot(sbigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
calib_from_medmodel = np.linalg.inv(medmodel_frame_from_calib_frame[:, :3])
calib_from_sbigmodel = np.linalg.inv(sbigmodel_frame_from_calib_frame[:, :3])
# This function is verified to give similar results to xx.uncommon.utils.transform_img
def get_warp_matrix(device_from_calib_euler: np.ndarray, wide_camera: bool = False, bigmodel_frame: bool = False, tici: bool = True) -> np.ndarray:
if tici and wide_camera:
cam_intrinsics = tici_ecam_intrinsics
elif tici:
cam_intrinsics = tici_fcam_intrinsics
else:
cam_intrinsics = eon_fcam_intrinsics
calib_from_model = calib_from_sbigmodel if bigmodel_frame else calib_from_medmodel
device_from_calib = rot_from_euler(device_from_calib_euler)
camera_from_calib = cam_intrinsics @ view_frame_from_device_frame @ device_from_calib
warp_matrix: np.ndarray = camera_from_calib @ calib_from_model
return warp_matrix