You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							219 lines
						
					
					
						
							9.1 KiB
						
					
					
				
			
		
		
	
	
							219 lines
						
					
					
						
							9.1 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import math
 | |
| import json
 | |
| import numpy as np
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from cereal import car
 | |
| from common.params import Params, put_nonblocking
 | |
| from common.realtime import config_realtime_process, DT_MDL
 | |
| from common.numpy_fast import clip
 | |
| from selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
 | |
| from selfdrive.locationd.models.constants import GENERATED_DIR
 | |
| from system.swaglog import cloudlog
 | |
| 
 | |
| 
 | |
| MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL  # Max 20 deg/s
 | |
| ROLL_MAX_DELTA = np.radians(20.0) * DT_MDL  # 20deg in 1 second is well within curvature limits
 | |
| ROLL_MIN, ROLL_MAX = math.radians(-10), math.radians(10)
 | |
| LATERAL_ACC_SENSOR_THRESHOLD = 4.0
 | |
| 
 | |
| 
 | |
| class ParamsLearner:
 | |
|   def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset, P_initial=None):
 | |
|     self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset, P_initial)
 | |
| 
 | |
|     self.kf.filter.set_global("mass", CP.mass)
 | |
|     self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
 | |
|     self.kf.filter.set_global("center_to_front", CP.centerToFront)
 | |
|     self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
 | |
|     self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
 | |
|     self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
 | |
| 
 | |
|     self.active = False
 | |
| 
 | |
|     self.speed = 0.0
 | |
|     self.yaw_rate = 0.0
 | |
|     self.yaw_rate_std = 0.0
 | |
|     self.roll = 0.0
 | |
|     self.steering_pressed = False
 | |
|     self.steering_angle = 0.0
 | |
| 
 | |
|     self.valid = True
 | |
| 
 | |
|   def handle_log(self, t, which, msg):
 | |
|     if which == 'liveLocationKalman':
 | |
|       self.yaw_rate = msg.angularVelocityCalibrated.value[2]
 | |
|       self.yaw_rate_std = msg.angularVelocityCalibrated.std[2]
 | |
| 
 | |
|       localizer_roll = msg.orientationNED.value[0]
 | |
|       localizer_roll_std = np.radians(1) if np.isnan(msg.orientationNED.std[0]) else msg.orientationNED.std[0]
 | |
|       roll_valid = msg.orientationNED.valid and ROLL_MIN < localizer_roll < ROLL_MAX
 | |
|       if roll_valid:
 | |
|         roll = localizer_roll
 | |
|         # Experimentally found multiplier of 2 to be best trade-off between stability and accuracy or similar?
 | |
|         roll_std = 2 * localizer_roll_std
 | |
|       else:
 | |
|         # This is done to bound the road roll estimate when localizer values are invalid
 | |
|         roll = 0.0
 | |
|         roll_std = np.radians(10.0)
 | |
|       self.roll = clip(roll, self.roll - ROLL_MAX_DELTA, self.roll + ROLL_MAX_DELTA)
 | |
| 
 | |
|       yaw_rate_valid = msg.angularVelocityCalibrated.valid
 | |
|       yaw_rate_valid = yaw_rate_valid and 0 < self.yaw_rate_std < 10  # rad/s
 | |
|       yaw_rate_valid = yaw_rate_valid and abs(self.yaw_rate) < 1  # rad/s
 | |
| 
 | |
|       if self.active:
 | |
|         if msg.posenetOK:
 | |
| 
 | |
|           if yaw_rate_valid:
 | |
|             self.kf.predict_and_observe(t,
 | |
|                                         ObservationKind.ROAD_FRAME_YAW_RATE,
 | |
|                                         np.array([[-self.yaw_rate]]),
 | |
|                                         np.array([np.atleast_2d(self.yaw_rate_std**2)]))
 | |
| 
 | |
|           self.kf.predict_and_observe(t,
 | |
|                                       ObservationKind.ROAD_ROLL,
 | |
|                                       np.array([[self.roll]]),
 | |
|                                       np.array([np.atleast_2d(roll_std**2)]))
 | |
|         self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
 | |
| 
 | |
|         # We observe the current stiffness and steer ratio (with a high observation noise) to bound
 | |
|         # the respective estimate STD. Otherwise the STDs keep increasing, causing rapid changes in the
 | |
|         # states in longer routes (especially straight stretches).
 | |
|         stiffness = float(self.kf.x[States.STIFFNESS])
 | |
|         steer_ratio = float(self.kf.x[States.STEER_RATIO])
 | |
|         self.kf.predict_and_observe(t, ObservationKind.STIFFNESS, np.array([[stiffness]]))
 | |
|         self.kf.predict_and_observe(t, ObservationKind.STEER_RATIO, np.array([[steer_ratio]]))
 | |
| 
 | |
|     elif which == 'carState':
 | |
|       self.steering_angle = msg.steeringAngleDeg
 | |
|       self.steering_pressed = msg.steeringPressed
 | |
|       self.speed = msg.vEgo
 | |
| 
 | |
|       in_linear_region = abs(self.steering_angle) < 45 or not self.steering_pressed
 | |
|       self.active = self.speed > 5 and in_linear_region
 | |
| 
 | |
|       if self.active:
 | |
|         self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
 | |
|         self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
 | |
| 
 | |
|     if not self.active:
 | |
|       # Reset time when stopped so uncertainty doesn't grow
 | |
|       self.kf.filter.set_filter_time(t)
 | |
|       self.kf.filter.reset_rewind()
 | |
| 
 | |
| 
 | |
| def main(sm=None, pm=None):
 | |
|   config_realtime_process([0, 1, 2, 3], 5)
 | |
| 
 | |
|   if sm is None:
 | |
|     sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
 | |
|   if pm is None:
 | |
|     pm = messaging.PubMaster(['liveParameters'])
 | |
| 
 | |
|   params_reader = Params()
 | |
|   # wait for stats about the car to come in from controls
 | |
|   cloudlog.info("paramsd is waiting for CarParams")
 | |
|   CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
 | |
|   cloudlog.info("paramsd got CarParams")
 | |
| 
 | |
|   min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
 | |
| 
 | |
|   params = params_reader.get("LiveParameters")
 | |
| 
 | |
|   # Check if car model matches
 | |
|   if params is not None:
 | |
|     params = json.loads(params)
 | |
|     if params.get('carFingerprint', None) != CP.carFingerprint:
 | |
|       cloudlog.info("Parameter learner found parameters for wrong car.")
 | |
|       params = None
 | |
| 
 | |
|   # Check if starting values are sane
 | |
|   if params is not None:
 | |
|     try:
 | |
|       angle_offset_sane = abs(params.get('angleOffsetAverageDeg')) < 10.0
 | |
|       steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
 | |
|       params_sane = angle_offset_sane and steer_ratio_sane
 | |
|       if not params_sane:
 | |
|         cloudlog.info(f"Invalid starting values found {params}")
 | |
|         params = None
 | |
|     except Exception as e:
 | |
|       cloudlog.info(f"Error reading params {params}: {str(e)}")
 | |
|       params = None
 | |
| 
 | |
|   # TODO: cache the params with the capnp struct
 | |
|   if params is None:
 | |
|     params = {
 | |
|       'carFingerprint': CP.carFingerprint,
 | |
|       'steerRatio': CP.steerRatio,
 | |
|       'stiffnessFactor': 1.0,
 | |
|       'angleOffsetAverageDeg': 0.0,
 | |
|     }
 | |
|     cloudlog.info("Parameter learner resetting to default values")
 | |
| 
 | |
|   # When driving in wet conditions the stiffness can go down, and then be too low on the next drive
 | |
|   # Without a way to detect this we have to reset the stiffness every drive
 | |
|   params['stiffnessFactor'] = 1.0
 | |
|   learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']))
 | |
|   angle_offset_average = params['angleOffsetAverageDeg']
 | |
|   angle_offset = angle_offset_average
 | |
| 
 | |
|   while True:
 | |
|     sm.update()
 | |
|     if sm.all_checks():
 | |
|       for which in sorted(sm.updated.keys(), key=lambda x: sm.logMonoTime[x]):
 | |
|         if sm.updated[which]:
 | |
|           t = sm.logMonoTime[which] * 1e-9
 | |
|           learner.handle_log(t, which, sm[which])
 | |
| 
 | |
|     if sm.updated['liveLocationKalman']:
 | |
|       x = learner.kf.x
 | |
|       P = np.sqrt(learner.kf.P.diagonal())
 | |
|       if not all(map(math.isfinite, x)):
 | |
|         cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
 | |
|         learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
 | |
|         x = learner.kf.x
 | |
| 
 | |
|       angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
 | |
|       angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
 | |
|       # Account for the opposite signs of the yaw rates
 | |
|       sensors_valid = bool(abs(learner.speed * (x[States.YAW_RATE] + learner.yaw_rate)) < LATERAL_ACC_SENSOR_THRESHOLD)
 | |
| 
 | |
|       msg = messaging.new_message('liveParameters')
 | |
| 
 | |
|       liveParameters = msg.liveParameters
 | |
|       liveParameters.posenetValid = True
 | |
|       liveParameters.sensorValid = sensors_valid
 | |
|       liveParameters.steerRatio = float(x[States.STEER_RATIO])
 | |
|       liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
 | |
|       liveParameters.roll = float(x[States.ROAD_ROLL])
 | |
|       liveParameters.angleOffsetAverageDeg = angle_offset_average
 | |
|       liveParameters.angleOffsetDeg = angle_offset
 | |
|       liveParameters.valid = all((
 | |
|         abs(liveParameters.angleOffsetAverageDeg) < 10.0,
 | |
|         abs(liveParameters.angleOffsetDeg) < 10.0,
 | |
|         0.2 <= liveParameters.stiffnessFactor <= 5.0,
 | |
|         min_sr <= liveParameters.steerRatio <= max_sr,
 | |
|       ))
 | |
|       liveParameters.steerRatioStd = float(P[States.STEER_RATIO])
 | |
|       liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS])
 | |
|       liveParameters.angleOffsetAverageStd = float(P[States.ANGLE_OFFSET])
 | |
|       liveParameters.angleOffsetFastStd = float(P[States.ANGLE_OFFSET_FAST])
 | |
| 
 | |
|       msg.valid = sm.all_checks()
 | |
| 
 | |
|       if sm.frame % 1200 == 0:  # once a minute
 | |
|         params = {
 | |
|           'carFingerprint': CP.carFingerprint,
 | |
|           'steerRatio': liveParameters.steerRatio,
 | |
|           'stiffnessFactor': liveParameters.stiffnessFactor,
 | |
|           'angleOffsetAverageDeg': liveParameters.angleOffsetAverageDeg,
 | |
|         }
 | |
|         put_nonblocking("LiveParameters", json.dumps(params))
 | |
| 
 | |
|       pm.send('liveParameters', msg)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   main()
 | |
| 
 |