You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
444 lines
17 KiB
444 lines
17 KiB
import os
|
|
import re
|
|
import uuid
|
|
import threading
|
|
import numpy as np
|
|
from collections import deque
|
|
import dearpygui.dearpygui as dpg
|
|
from abc import ABC, abstractmethod
|
|
|
|
|
|
class ViewPanel(ABC):
|
|
"""Abstract base class for all view panels that can be displayed in a plot container"""
|
|
|
|
def __init__(self, panel_id: str = None):
|
|
self.panel_id = panel_id or str(uuid.uuid4())
|
|
self.title = "Untitled Panel"
|
|
|
|
@abstractmethod
|
|
def clear(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def create_ui(self, parent_tag: str):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def destroy_ui(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_panel_type(self) -> str:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def update(self):
|
|
pass
|
|
|
|
|
|
class TimeSeriesPanel(ViewPanel):
|
|
def __init__(self, data_manager, playback_manager, worker_manager, panel_id: str | None = None):
|
|
super().__init__(panel_id)
|
|
self.data_manager = data_manager
|
|
self.playback_manager = playback_manager
|
|
self.worker_manager = worker_manager
|
|
self.title = "Time Series Plot"
|
|
self.plot_tag = f"plot_{self.panel_id}"
|
|
self.x_axis_tag = f"{self.plot_tag}_x_axis"
|
|
self.y_axis_tag = f"{self.plot_tag}_y_axis"
|
|
self.timeline_indicator_tag = f"{self.plot_tag}_timeline"
|
|
self._ui_created = False
|
|
self._series_data: dict[str, tuple[list, list]] = {}
|
|
self._last_plot_duration = 0
|
|
self._update_lock = threading.RLock()
|
|
self.results_deque: deque[tuple[str, list, list]] = deque()
|
|
self._new_data = False
|
|
|
|
def create_ui(self, parent_tag: str):
|
|
self.data_manager.add_observer(self.on_data_loaded)
|
|
with dpg.plot(height=-1, width=-1, tag=self.plot_tag, parent=parent_tag, drop_callback=self._on_series_drop, payload_type="TIMESERIES_PAYLOAD"):
|
|
dpg.add_plot_legend()
|
|
dpg.add_plot_axis(dpg.mvXAxis, no_label=True, tag=self.x_axis_tag)
|
|
dpg.add_plot_axis(dpg.mvYAxis, no_label=True, tag=self.y_axis_tag)
|
|
timeline_series_tag = dpg.add_inf_line_series(x=[0], label="Timeline", parent=self.y_axis_tag, tag=self.timeline_indicator_tag)
|
|
dpg.bind_item_theme(timeline_series_tag, "global_timeline_theme")
|
|
|
|
for series_path in list(self._series_data.keys()):
|
|
self.add_series(series_path)
|
|
self._ui_created = True
|
|
|
|
def update(self):
|
|
with self._update_lock:
|
|
if not self._ui_created:
|
|
return
|
|
|
|
if self._new_data: # handle new data in main thread
|
|
self._new_data = False
|
|
for series_path in list(self._series_data.keys()):
|
|
self.add_series(series_path, update=True)
|
|
|
|
while self.results_deque: # handle downsampled results in main thread
|
|
results = self.results_deque.popleft()
|
|
for series_path, downsampled_time, downsampled_values in results:
|
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
|
if dpg.does_item_exist(series_tag):
|
|
dpg.set_value(series_tag, [downsampled_time, downsampled_values])
|
|
|
|
# update timeline
|
|
current_time_s = self.playback_manager.current_time_s
|
|
dpg.set_value(self.timeline_indicator_tag, [[current_time_s], [0]])
|
|
|
|
# update timeseries legend label
|
|
for series_path, (time_array, value_array) in self._series_data.items():
|
|
position = np.searchsorted(time_array, current_time_s, side='right') - 1
|
|
if position >= 0 and (current_time_s - time_array[position]) <= 1.0:
|
|
value = value_array[position]
|
|
formatted_value = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
|
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
|
if dpg.does_item_exist(series_tag):
|
|
dpg.configure_item(series_tag, label=f"{series_path}: {formatted_value}")
|
|
|
|
# downsample if plot zoom changed significantly
|
|
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
|
|
if plot_duration > self._last_plot_duration * 2 or plot_duration < self._last_plot_duration * 0.5:
|
|
self._downsample_all_series(plot_duration)
|
|
|
|
def _downsample_all_series(self, plot_duration):
|
|
plot_width = dpg.get_item_rect_size(self.plot_tag)[0]
|
|
if plot_width <= 0 or plot_duration <= 0:
|
|
return
|
|
|
|
self._last_plot_duration = plot_duration
|
|
target_points_per_second = plot_width / plot_duration
|
|
work_items = []
|
|
for series_path, (time_array, value_array) in self._series_data.items():
|
|
if len(time_array) == 0:
|
|
continue
|
|
series_duration = time_array[-1] - time_array[0] if len(time_array) > 1 else 1
|
|
points_per_second = len(time_array) / series_duration
|
|
if points_per_second > target_points_per_second * 2:
|
|
target_points = max(int(target_points_per_second * series_duration), plot_width)
|
|
work_items.append((series_path, time_array, value_array, target_points))
|
|
elif dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
|
|
dpg.set_value(f"series_{self.panel_id}_{series_path}", [time_array, value_array])
|
|
|
|
if work_items:
|
|
self.worker_manager.submit_task(
|
|
TimeSeriesPanel._downsample_worker, work_items, callback=lambda results: self.results_deque.append(results), task_id=f"downsample_{self.panel_id}"
|
|
)
|
|
|
|
def add_series(self, series_path: str, update: bool = False):
|
|
with self._update_lock:
|
|
if update or series_path not in self._series_data:
|
|
self._series_data[series_path] = self.data_manager.get_timeseries(series_path)
|
|
|
|
time_array, value_array = self._series_data[series_path]
|
|
series_tag = f"series_{self.panel_id}_{series_path}"
|
|
if dpg.does_item_exist(series_tag):
|
|
dpg.set_value(series_tag, [time_array, value_array])
|
|
else:
|
|
line_series_tag = dpg.add_line_series(x=time_array, y=value_array, label=series_path, parent=self.y_axis_tag, tag=series_tag)
|
|
dpg.bind_item_theme(line_series_tag, "global_line_theme")
|
|
dpg.fit_axis_data(self.x_axis_tag)
|
|
dpg.fit_axis_data(self.y_axis_tag)
|
|
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
|
|
self._downsample_all_series(plot_duration)
|
|
|
|
def destroy_ui(self):
|
|
with self._update_lock:
|
|
self.data_manager.remove_observer(self.on_data_loaded)
|
|
if dpg.does_item_exist(self.plot_tag):
|
|
dpg.delete_item(self.plot_tag)
|
|
self._ui_created = False
|
|
|
|
def get_panel_type(self) -> str:
|
|
return "timeseries"
|
|
|
|
def clear(self):
|
|
with self._update_lock:
|
|
for series_path in list(self._series_data.keys()):
|
|
self.remove_series(series_path)
|
|
|
|
def remove_series(self, series_path: str):
|
|
with self._update_lock:
|
|
if series_path in self._series_data:
|
|
if dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
|
|
dpg.delete_item(f"series_{self.panel_id}_{series_path}")
|
|
del self._series_data[series_path]
|
|
|
|
def on_data_loaded(self, data: dict):
|
|
self._new_data = True
|
|
|
|
def _on_series_drop(self, sender, app_data, user_data):
|
|
self.add_series(app_data)
|
|
|
|
@staticmethod
|
|
def _downsample_worker(series_path, time_array, value_array, target_points):
|
|
if len(time_array) <= target_points:
|
|
return series_path, time_array, value_array
|
|
|
|
step = len(time_array) / target_points
|
|
indices = []
|
|
|
|
for i in range(target_points):
|
|
start_idx = int(i * step)
|
|
end_idx = int((i + 1) * step)
|
|
if start_idx == end_idx:
|
|
indices.append(start_idx)
|
|
else:
|
|
bucket_values = value_array[start_idx:end_idx]
|
|
min_idx = start_idx + np.argmin(bucket_values)
|
|
max_idx = start_idx + np.argmax(bucket_values)
|
|
if min_idx != max_idx:
|
|
indices.extend([min(min_idx, max_idx), max(min_idx, max_idx)])
|
|
else:
|
|
indices.append(min_idx)
|
|
indices = sorted(set(indices))
|
|
return series_path, time_array[indices], value_array[indices]
|
|
|
|
|
|
class DataTreeNode:
|
|
def __init__(self, name: str, full_path: str = ""):
|
|
self.name = name
|
|
self.full_path = full_path
|
|
self.children: dict[str, DataTreeNode] = {}
|
|
self.is_leaf = False
|
|
self.child_count = 0
|
|
self.is_plottable_cached: bool | None = None
|
|
self.ui_created = False
|
|
self.ui_tag: str | None = None
|
|
|
|
|
|
class DataTreeView:
|
|
MAX_ITEMS_PER_FRAME = 50
|
|
|
|
def __init__(self, data_manager, playback_manager):
|
|
self.data_manager = data_manager
|
|
self.playback_manager = playback_manager
|
|
self.lock = threading.RLock()
|
|
self.current_search = ""
|
|
self.data_tree = DataTreeNode(name="root")
|
|
self.ui_render_queue: deque[tuple[DataTreeNode, str, str, bool]] = deque()
|
|
self.visible_expanded_nodes: set[str] = set()
|
|
self._all_paths_cache: list[str] = []
|
|
self._previous_paths_set: set[str] = set()
|
|
self.avg_char_width = None
|
|
self.data_manager.add_observer(self._on_data_loaded)
|
|
|
|
def _on_data_loaded(self, data: dict):
|
|
with self.lock:
|
|
if data.get('segment_added'):
|
|
current_paths = set(self.data_manager.get_all_paths())
|
|
new_paths = current_paths - self._previous_paths_set
|
|
if new_paths:
|
|
self._all_paths_cache = list(current_paths)
|
|
if not self._previous_paths_set:
|
|
self._populate_tree()
|
|
else:
|
|
self._add_paths_to_tree(new_paths, incremental=True)
|
|
self._previous_paths_set = current_paths.copy()
|
|
|
|
def _populate_tree(self):
|
|
self._clear_ui()
|
|
search_term = self.current_search.strip().lower()
|
|
self.data_tree = self._add_paths_to_tree(self._all_paths_cache, incremental=False)
|
|
for child in sorted(self.data_tree.children.values(), key=self._natural_sort_key):
|
|
self.ui_render_queue.append((child, "data_tree_container", search_term, child.is_leaf))
|
|
|
|
def _add_paths_to_tree(self, paths, incremental=False):
|
|
search_term = self.current_search.strip().lower()
|
|
filtered_paths = [path for path in paths if self._should_show_path(path, search_term)]
|
|
target_tree = self.data_tree if incremental else DataTreeNode(name="root")
|
|
|
|
if not filtered_paths:
|
|
return target_tree
|
|
|
|
for path in sorted(filtered_paths):
|
|
parts = path.split('/')
|
|
current_node = target_tree
|
|
current_path_prefix = ""
|
|
|
|
for i, part in enumerate(parts):
|
|
current_path_prefix = f"{current_path_prefix}/{part}" if current_path_prefix else part
|
|
if part not in current_node.children:
|
|
current_node.children[part] = DataTreeNode(name=part, full_path=current_path_prefix)
|
|
current_node = current_node.children[part]
|
|
|
|
if not current_node.is_leaf:
|
|
current_node.is_leaf = True
|
|
|
|
self._calculate_child_counts(target_tree)
|
|
if incremental:
|
|
self._queue_new_ui_items(filtered_paths, search_term)
|
|
return target_tree
|
|
|
|
def _queue_new_ui_items(self, new_paths, search_term):
|
|
for path in new_paths:
|
|
parts = path.split('/')
|
|
parent_path = '/'.join(parts[:-1]) if len(parts) > 1 else ""
|
|
if parent_path == "" or parent_path in self.visible_expanded_nodes:
|
|
parent_tag = "data_tree_container" if parent_path == "" else f"tree_{parent_path}"
|
|
if dpg.does_item_exist(parent_tag):
|
|
node = self.data_tree
|
|
for part in parts:
|
|
node = node.children[part]
|
|
self.ui_render_queue.append((node, parent_tag, search_term, True))
|
|
|
|
def update_frame(self, font):
|
|
with self.lock:
|
|
if self.avg_char_width is None and dpg.is_dearpygui_running():
|
|
self.avg_char_width = self.calculate_avg_char_width(font)
|
|
|
|
items_processed = 0
|
|
while self.ui_render_queue and items_processed < self.MAX_ITEMS_PER_FRAME:
|
|
node, parent_tag, search_term, is_leaf = self.ui_render_queue.popleft()
|
|
if is_leaf:
|
|
self._create_leaf_ui(node, parent_tag)
|
|
else:
|
|
self._create_node_ui(node, parent_tag, search_term)
|
|
items_processed += 1
|
|
|
|
def search_data(self, search_term: str):
|
|
with self.lock:
|
|
self.current_search = search_term
|
|
self._all_paths_cache = self.data_manager.get_all_paths()
|
|
self._previous_paths_set = set(self._all_paths_cache)
|
|
self._populate_tree()
|
|
|
|
def _clear_ui(self):
|
|
if dpg.does_item_exist("data_tree_container"):
|
|
dpg.delete_item("data_tree_container", children_only=True)
|
|
|
|
self.ui_render_queue.clear()
|
|
self.visible_expanded_nodes.clear()
|
|
|
|
def _calculate_child_counts(self, node: DataTreeNode):
|
|
if node.is_leaf:
|
|
node.child_count = 0
|
|
else:
|
|
node.child_count = len(node.children)
|
|
for child in node.children.values():
|
|
self._calculate_child_counts(child)
|
|
|
|
def _create_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str):
|
|
if node.is_leaf:
|
|
self._create_leaf_ui(node, parent_tag)
|
|
else:
|
|
self._create_tree_node_ui(node, parent_tag, search_term)
|
|
|
|
def _create_tree_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str):
|
|
if not dpg.does_item_exist(parent_tag):
|
|
return
|
|
node_tag = f"tree_{node.full_path}"
|
|
node.ui_tag = node_tag
|
|
|
|
label = f"{node.name} ({node.child_count} fields)"
|
|
should_open = bool(search_term) and len(search_term) > 1 and any(search_term in path for path in self._get_descendant_paths(node))
|
|
|
|
with dpg.tree_node(label=label, parent=parent_tag, tag=node_tag, default_open=should_open, open_on_arrow=True, open_on_double_click=True) as tree_node:
|
|
with dpg.item_handler_registry() as handler:
|
|
dpg.add_item_toggled_open_handler(callback=lambda s, d, u: self._on_node_expanded(node, search_term))
|
|
dpg.bind_item_handler_registry(tree_node, handler)
|
|
|
|
node.ui_created = True
|
|
|
|
if should_open:
|
|
self.visible_expanded_nodes.add(node.full_path)
|
|
self._queue_children(node, node_tag, search_term)
|
|
|
|
def _create_leaf_ui(self, node: DataTreeNode, parent_tag: str):
|
|
if not dpg.does_item_exist(parent_tag):
|
|
return
|
|
half_split_size = dpg.get_item_rect_size("data_pool_window")[0] // 2
|
|
with dpg.group(parent=parent_tag, horizontal=True, xoffset=half_split_size, tag=f"group_{node.full_path}") as draggable_group:
|
|
dpg.add_text(node.name)
|
|
dpg.add_text("N/A", tag=f"value_{node.full_path}")
|
|
if node.is_plottable_cached is None:
|
|
node.is_plottable_cached = self.data_manager.is_plottable(node.full_path)
|
|
if node.is_plottable_cached:
|
|
with dpg.drag_payload(parent=draggable_group, drag_data=node.full_path, payload_type="TIMESERIES_PAYLOAD"):
|
|
dpg.add_text(f"Plot: {node.full_path}")
|
|
|
|
with dpg.item_handler_registry() as handler:
|
|
dpg.add_item_visible_handler(callback=self._on_item_visible, user_data=node.full_path)
|
|
dpg.bind_item_handler_registry(draggable_group, handler)
|
|
|
|
node.ui_created = True
|
|
node.ui_tag = f"value_{node.full_path}"
|
|
|
|
def _on_item_visible(self, sender, app_data, user_data):
|
|
path = user_data
|
|
if not path or not self.avg_char_width:
|
|
return
|
|
|
|
value_tag = f"value_{path}"
|
|
value_column_width = dpg.get_item_rect_size("data_pool_window")[0] // 2
|
|
dpg.configure_item(f"group_{path}", xoffset=value_column_width)
|
|
|
|
value = self.data_manager.get_value_at(path, self.playback_manager.current_time_s)
|
|
if value is not None:
|
|
formatted_value = self.format_and_truncate(value, value_column_width, self.avg_char_width)
|
|
dpg.set_value(value_tag, formatted_value)
|
|
else:
|
|
dpg.set_value(value_tag, "N/A")
|
|
|
|
def _queue_children(self, node: DataTreeNode, parent_tag: str, search_term: str):
|
|
for child in sorted(node.children.values(), key=self._natural_sort_key):
|
|
self.ui_render_queue.append((child, parent_tag, search_term, child.is_leaf))
|
|
|
|
def _on_node_expanded(self, node: DataTreeNode, search_term: str):
|
|
node_tag = f"tree_{node.full_path}"
|
|
if not dpg.does_item_exist(node_tag):
|
|
return
|
|
|
|
is_expanded = dpg.get_value(node_tag)
|
|
|
|
if is_expanded:
|
|
if node.full_path not in self.visible_expanded_nodes:
|
|
self.visible_expanded_nodes.add(node.full_path)
|
|
self._queue_children(node, node_tag, search_term)
|
|
else:
|
|
self.visible_expanded_nodes.discard(node.full_path)
|
|
self._remove_children_from_queue(node.full_path)
|
|
|
|
def _remove_children_from_queue(self, collapsed_node_path: str):
|
|
new_queue: deque[tuple] = deque()
|
|
for item in self.ui_render_queue:
|
|
node = item[0]
|
|
if not node.full_path.startswith(collapsed_node_path + "/"):
|
|
new_queue.append(item)
|
|
self.ui_render_queue = new_queue
|
|
|
|
def _should_show_path(self, path: str, search_term: str) -> bool:
|
|
if 'DEPRECATED' in path and not os.environ.get('SHOW_DEPRECATED'):
|
|
return False
|
|
return not search_term or search_term in path.lower()
|
|
|
|
def _natural_sort_key(self, node: DataTreeNode):
|
|
node_type_key = node.is_leaf
|
|
parts = [int(p) if p.isdigit() else p.lower() for p in re.split(r'(\d+)', node.name) if p]
|
|
return (node_type_key, parts)
|
|
|
|
def _get_descendant_paths(self, node: DataTreeNode):
|
|
for child_name, child_node in node.children.items():
|
|
child_name_lower = child_name.lower()
|
|
if child_node.is_leaf:
|
|
yield child_name_lower
|
|
else:
|
|
for path in self._get_descendant_paths(child_node):
|
|
yield f"{child_name_lower}/{path}"
|
|
|
|
@staticmethod
|
|
def calculate_avg_char_width(font):
|
|
sample_text = "abcdefghijklmnopqrstuvwxyz0123456789"
|
|
if size := dpg.get_text_size(sample_text, font=font):
|
|
return size[0] / len(sample_text)
|
|
return 10.0
|
|
|
|
@staticmethod
|
|
def format_and_truncate(value, available_width: float, avg_char_width: float) -> str:
|
|
s = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
|
|
max_chars = int(available_width / avg_char_width) - 3
|
|
if len(s) > max_chars:
|
|
return s[: max(0, max_chars)] + "..."
|
|
return s
|
|
|