openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

444 lines
17 KiB

import os
import re
import uuid
import threading
import numpy as np
from collections import deque
import dearpygui.dearpygui as dpg
from abc import ABC, abstractmethod
class ViewPanel(ABC):
"""Abstract base class for all view panels that can be displayed in a plot container"""
def __init__(self, panel_id: str = None):
self.panel_id = panel_id or str(uuid.uuid4())
self.title = "Untitled Panel"
@abstractmethod
def clear(self):
pass
@abstractmethod
def create_ui(self, parent_tag: str):
pass
@abstractmethod
def destroy_ui(self):
pass
@abstractmethod
def get_panel_type(self) -> str:
pass
@abstractmethod
def update(self):
pass
class TimeSeriesPanel(ViewPanel):
def __init__(self, data_manager, playback_manager, worker_manager, panel_id: str | None = None):
super().__init__(panel_id)
self.data_manager = data_manager
self.playback_manager = playback_manager
self.worker_manager = worker_manager
self.title = "Time Series Plot"
self.plot_tag = f"plot_{self.panel_id}"
self.x_axis_tag = f"{self.plot_tag}_x_axis"
self.y_axis_tag = f"{self.plot_tag}_y_axis"
self.timeline_indicator_tag = f"{self.plot_tag}_timeline"
self._ui_created = False
self._series_data: dict[str, tuple[list, list]] = {}
self._last_plot_duration = 0
self._update_lock = threading.RLock()
self.results_deque: deque[tuple[str, list, list]] = deque()
self._new_data = False
def create_ui(self, parent_tag: str):
self.data_manager.add_observer(self.on_data_loaded)
with dpg.plot(height=-1, width=-1, tag=self.plot_tag, parent=parent_tag, drop_callback=self._on_series_drop, payload_type="TIMESERIES_PAYLOAD"):
dpg.add_plot_legend()
dpg.add_plot_axis(dpg.mvXAxis, no_label=True, tag=self.x_axis_tag)
dpg.add_plot_axis(dpg.mvYAxis, no_label=True, tag=self.y_axis_tag)
timeline_series_tag = dpg.add_inf_line_series(x=[0], label="Timeline", parent=self.y_axis_tag, tag=self.timeline_indicator_tag)
dpg.bind_item_theme(timeline_series_tag, "global_timeline_theme")
for series_path in list(self._series_data.keys()):
self.add_series(series_path)
self._ui_created = True
def update(self):
with self._update_lock:
if not self._ui_created:
return
if self._new_data: # handle new data in main thread
self._new_data = False
for series_path in list(self._series_data.keys()):
self.add_series(series_path, update=True)
while self.results_deque: # handle downsampled results in main thread
results = self.results_deque.popleft()
for series_path, downsampled_time, downsampled_values in results:
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.set_value(series_tag, [downsampled_time, downsampled_values])
# update timeline
current_time_s = self.playback_manager.current_time_s
dpg.set_value(self.timeline_indicator_tag, [[current_time_s], [0]])
# update timeseries legend label
for series_path, (time_array, value_array) in self._series_data.items():
position = np.searchsorted(time_array, current_time_s, side='right') - 1
if position >= 0 and (current_time_s - time_array[position]) <= 1.0:
value = value_array[position]
formatted_value = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.configure_item(series_tag, label=f"{series_path}: {formatted_value}")
# downsample if plot zoom changed significantly
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
if plot_duration > self._last_plot_duration * 2 or plot_duration < self._last_plot_duration * 0.5:
self._downsample_all_series(plot_duration)
def _downsample_all_series(self, plot_duration):
plot_width = dpg.get_item_rect_size(self.plot_tag)[0]
if plot_width <= 0 or plot_duration <= 0:
return
self._last_plot_duration = plot_duration
target_points_per_second = plot_width / plot_duration
work_items = []
for series_path, (time_array, value_array) in self._series_data.items():
if len(time_array) == 0:
continue
series_duration = time_array[-1] - time_array[0] if len(time_array) > 1 else 1
points_per_second = len(time_array) / series_duration
if points_per_second > target_points_per_second * 2:
target_points = max(int(target_points_per_second * series_duration), plot_width)
work_items.append((series_path, time_array, value_array, target_points))
elif dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
dpg.set_value(f"series_{self.panel_id}_{series_path}", [time_array, value_array])
if work_items:
self.worker_manager.submit_task(
TimeSeriesPanel._downsample_worker, work_items, callback=lambda results: self.results_deque.append(results), task_id=f"downsample_{self.panel_id}"
)
def add_series(self, series_path: str, update: bool = False):
with self._update_lock:
if update or series_path not in self._series_data:
self._series_data[series_path] = self.data_manager.get_timeseries(series_path)
time_array, value_array = self._series_data[series_path]
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.set_value(series_tag, [time_array, value_array])
else:
line_series_tag = dpg.add_line_series(x=time_array, y=value_array, label=series_path, parent=self.y_axis_tag, tag=series_tag)
dpg.bind_item_theme(line_series_tag, "global_line_theme")
dpg.fit_axis_data(self.x_axis_tag)
dpg.fit_axis_data(self.y_axis_tag)
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
self._downsample_all_series(plot_duration)
def destroy_ui(self):
with self._update_lock:
self.data_manager.remove_observer(self.on_data_loaded)
if dpg.does_item_exist(self.plot_tag):
dpg.delete_item(self.plot_tag)
self._ui_created = False
def get_panel_type(self) -> str:
return "timeseries"
def clear(self):
with self._update_lock:
for series_path in list(self._series_data.keys()):
self.remove_series(series_path)
def remove_series(self, series_path: str):
with self._update_lock:
if series_path in self._series_data:
if dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
dpg.delete_item(f"series_{self.panel_id}_{series_path}")
del self._series_data[series_path]
def on_data_loaded(self, data: dict):
self._new_data = True
def _on_series_drop(self, sender, app_data, user_data):
self.add_series(app_data)
@staticmethod
def _downsample_worker(series_path, time_array, value_array, target_points):
if len(time_array) <= target_points:
return series_path, time_array, value_array
step = len(time_array) / target_points
indices = []
for i in range(target_points):
start_idx = int(i * step)
end_idx = int((i + 1) * step)
if start_idx == end_idx:
indices.append(start_idx)
else:
bucket_values = value_array[start_idx:end_idx]
min_idx = start_idx + np.argmin(bucket_values)
max_idx = start_idx + np.argmax(bucket_values)
if min_idx != max_idx:
indices.extend([min(min_idx, max_idx), max(min_idx, max_idx)])
else:
indices.append(min_idx)
indices = sorted(set(indices))
return series_path, time_array[indices], value_array[indices]
class DataTreeNode:
def __init__(self, name: str, full_path: str = ""):
self.name = name
self.full_path = full_path
self.children: dict[str, DataTreeNode] = {}
self.is_leaf = False
self.child_count = 0
self.is_plottable_cached: bool | None = None
self.ui_created = False
self.ui_tag: str | None = None
class DataTreeView:
MAX_ITEMS_PER_FRAME = 50
def __init__(self, data_manager, playback_manager):
self.data_manager = data_manager
self.playback_manager = playback_manager
self.lock = threading.RLock()
self.current_search = ""
self.data_tree = DataTreeNode(name="root")
self.ui_render_queue: deque[tuple[DataTreeNode, str, str, bool]] = deque()
self.visible_expanded_nodes: set[str] = set()
self._all_paths_cache: list[str] = []
self._previous_paths_set: set[str] = set()
self.avg_char_width = None
self.data_manager.add_observer(self._on_data_loaded)
def _on_data_loaded(self, data: dict):
with self.lock:
if data.get('segment_added'):
current_paths = set(self.data_manager.get_all_paths())
new_paths = current_paths - self._previous_paths_set
if new_paths:
self._all_paths_cache = list(current_paths)
if not self._previous_paths_set:
self._populate_tree()
else:
self._add_paths_to_tree(new_paths, incremental=True)
self._previous_paths_set = current_paths.copy()
def _populate_tree(self):
self._clear_ui()
search_term = self.current_search.strip().lower()
self.data_tree = self._add_paths_to_tree(self._all_paths_cache, incremental=False)
for child in sorted(self.data_tree.children.values(), key=self._natural_sort_key):
self.ui_render_queue.append((child, "data_tree_container", search_term, child.is_leaf))
def _add_paths_to_tree(self, paths, incremental=False):
search_term = self.current_search.strip().lower()
filtered_paths = [path for path in paths if self._should_show_path(path, search_term)]
target_tree = self.data_tree if incremental else DataTreeNode(name="root")
if not filtered_paths:
return target_tree
for path in sorted(filtered_paths):
parts = path.split('/')
current_node = target_tree
current_path_prefix = ""
for i, part in enumerate(parts):
current_path_prefix = f"{current_path_prefix}/{part}" if current_path_prefix else part
if part not in current_node.children:
current_node.children[part] = DataTreeNode(name=part, full_path=current_path_prefix)
current_node = current_node.children[part]
if not current_node.is_leaf:
current_node.is_leaf = True
self._calculate_child_counts(target_tree)
if incremental:
self._queue_new_ui_items(filtered_paths, search_term)
return target_tree
def _queue_new_ui_items(self, new_paths, search_term):
for path in new_paths:
parts = path.split('/')
parent_path = '/'.join(parts[:-1]) if len(parts) > 1 else ""
if parent_path == "" or parent_path in self.visible_expanded_nodes:
parent_tag = "data_tree_container" if parent_path == "" else f"tree_{parent_path}"
if dpg.does_item_exist(parent_tag):
node = self.data_tree
for part in parts:
node = node.children[part]
self.ui_render_queue.append((node, parent_tag, search_term, True))
def update_frame(self, font):
with self.lock:
if self.avg_char_width is None and dpg.is_dearpygui_running():
self.avg_char_width = self.calculate_avg_char_width(font)
items_processed = 0
while self.ui_render_queue and items_processed < self.MAX_ITEMS_PER_FRAME:
node, parent_tag, search_term, is_leaf = self.ui_render_queue.popleft()
if is_leaf:
self._create_leaf_ui(node, parent_tag)
else:
self._create_node_ui(node, parent_tag, search_term)
items_processed += 1
def search_data(self, search_term: str):
with self.lock:
self.current_search = search_term
self._all_paths_cache = self.data_manager.get_all_paths()
self._previous_paths_set = set(self._all_paths_cache)
self._populate_tree()
def _clear_ui(self):
if dpg.does_item_exist("data_tree_container"):
dpg.delete_item("data_tree_container", children_only=True)
self.ui_render_queue.clear()
self.visible_expanded_nodes.clear()
def _calculate_child_counts(self, node: DataTreeNode):
if node.is_leaf:
node.child_count = 0
else:
node.child_count = len(node.children)
for child in node.children.values():
self._calculate_child_counts(child)
def _create_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str):
if node.is_leaf:
self._create_leaf_ui(node, parent_tag)
else:
self._create_tree_node_ui(node, parent_tag, search_term)
def _create_tree_node_ui(self, node: DataTreeNode, parent_tag: str, search_term: str):
if not dpg.does_item_exist(parent_tag):
return
node_tag = f"tree_{node.full_path}"
node.ui_tag = node_tag
label = f"{node.name} ({node.child_count} fields)"
should_open = bool(search_term) and len(search_term) > 1 and any(search_term in path for path in self._get_descendant_paths(node))
with dpg.tree_node(label=label, parent=parent_tag, tag=node_tag, default_open=should_open, open_on_arrow=True, open_on_double_click=True) as tree_node:
with dpg.item_handler_registry() as handler:
dpg.add_item_toggled_open_handler(callback=lambda s, d, u: self._on_node_expanded(node, search_term))
dpg.bind_item_handler_registry(tree_node, handler)
node.ui_created = True
if should_open:
self.visible_expanded_nodes.add(node.full_path)
self._queue_children(node, node_tag, search_term)
def _create_leaf_ui(self, node: DataTreeNode, parent_tag: str):
if not dpg.does_item_exist(parent_tag):
return
half_split_size = dpg.get_item_rect_size("data_pool_window")[0] // 2
with dpg.group(parent=parent_tag, horizontal=True, xoffset=half_split_size, tag=f"group_{node.full_path}") as draggable_group:
dpg.add_text(node.name)
dpg.add_text("N/A", tag=f"value_{node.full_path}")
if node.is_plottable_cached is None:
node.is_plottable_cached = self.data_manager.is_plottable(node.full_path)
if node.is_plottable_cached:
with dpg.drag_payload(parent=draggable_group, drag_data=node.full_path, payload_type="TIMESERIES_PAYLOAD"):
dpg.add_text(f"Plot: {node.full_path}")
with dpg.item_handler_registry() as handler:
dpg.add_item_visible_handler(callback=self._on_item_visible, user_data=node.full_path)
dpg.bind_item_handler_registry(draggable_group, handler)
node.ui_created = True
node.ui_tag = f"value_{node.full_path}"
def _on_item_visible(self, sender, app_data, user_data):
path = user_data
if not path or not self.avg_char_width:
return
value_tag = f"value_{path}"
value_column_width = dpg.get_item_rect_size("data_pool_window")[0] // 2
dpg.configure_item(f"group_{path}", xoffset=value_column_width)
value = self.data_manager.get_value_at(path, self.playback_manager.current_time_s)
if value is not None:
formatted_value = self.format_and_truncate(value, value_column_width, self.avg_char_width)
dpg.set_value(value_tag, formatted_value)
else:
dpg.set_value(value_tag, "N/A")
def _queue_children(self, node: DataTreeNode, parent_tag: str, search_term: str):
for child in sorted(node.children.values(), key=self._natural_sort_key):
self.ui_render_queue.append((child, parent_tag, search_term, child.is_leaf))
def _on_node_expanded(self, node: DataTreeNode, search_term: str):
node_tag = f"tree_{node.full_path}"
if not dpg.does_item_exist(node_tag):
return
is_expanded = dpg.get_value(node_tag)
if is_expanded:
if node.full_path not in self.visible_expanded_nodes:
self.visible_expanded_nodes.add(node.full_path)
self._queue_children(node, node_tag, search_term)
else:
self.visible_expanded_nodes.discard(node.full_path)
self._remove_children_from_queue(node.full_path)
def _remove_children_from_queue(self, collapsed_node_path: str):
new_queue: deque[tuple] = deque()
for item in self.ui_render_queue:
node = item[0]
if not node.full_path.startswith(collapsed_node_path + "/"):
new_queue.append(item)
self.ui_render_queue = new_queue
def _should_show_path(self, path: str, search_term: str) -> bool:
if 'DEPRECATED' in path and not os.environ.get('SHOW_DEPRECATED'):
return False
return not search_term or search_term in path.lower()
def _natural_sort_key(self, node: DataTreeNode):
node_type_key = node.is_leaf
parts = [int(p) if p.isdigit() else p.lower() for p in re.split(r'(\d+)', node.name) if p]
return (node_type_key, parts)
def _get_descendant_paths(self, node: DataTreeNode):
for child_name, child_node in node.children.items():
child_name_lower = child_name.lower()
if child_node.is_leaf:
yield child_name_lower
else:
for path in self._get_descendant_paths(child_node):
yield f"{child_name_lower}/{path}"
@staticmethod
def calculate_avg_char_width(font):
sample_text = "abcdefghijklmnopqrstuvwxyz0123456789"
if size := dpg.get_text_size(sample_text, font=font):
return size[0] / len(sample_text)
return 10.0
@staticmethod
def format_and_truncate(value, available_width: float, avg_char_width: float) -> str:
s = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
max_chars = int(available_width / avg_char_width) - 3
if len(s) > max_chars:
return s[: max(0, max_chars)] + "..."
return s