You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.1 KiB
128 lines
4.1 KiB
import unittest
|
|
import numpy as np
|
|
from selfdrive.car.honda.interface import CarInterface
|
|
from selfdrive.controls.lib.lateral_mpc import libmpc_py
|
|
from selfdrive.controls.lib.vehicle_model import VehicleModel
|
|
from selfdrive.controls.lib.lane_planner import calc_d_poly
|
|
|
|
|
|
def run_mpc(v_ref=30., x_init=0., y_init=0., psi_init=0., delta_init=0.,
|
|
l_prob=1., r_prob=1., p_prob=1.,
|
|
poly_l=np.array([0., 0., 0., 1.8]), poly_r=np.array([0., 0., 0., -1.8]), poly_p=np.array([0., 0., 0., 0.]),
|
|
lane_width=3.6, poly_shift=0.):
|
|
|
|
libmpc = libmpc_py.libmpc
|
|
libmpc.init(1.0, 3.0, 1.0, 1.0)
|
|
|
|
mpc_solution = libmpc_py.ffi.new("log_t *")
|
|
|
|
p_l = poly_l.copy()
|
|
p_l[3] += poly_shift
|
|
|
|
p_r = poly_r.copy()
|
|
p_r[3] += poly_shift
|
|
|
|
p_p = poly_p.copy()
|
|
p_p[3] += poly_shift
|
|
|
|
d_poly = calc_d_poly(p_l, p_r, p_p, l_prob, r_prob, lane_width, v_ref)
|
|
|
|
CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING")
|
|
VM = VehicleModel(CP)
|
|
|
|
curvature_factor = VM.curvature_factor(v_ref)
|
|
|
|
l_poly = libmpc_py.ffi.new("double[4]", list(map(float, p_l)))
|
|
r_poly = libmpc_py.ffi.new("double[4]", list(map(float, p_r)))
|
|
d_poly = libmpc_py.ffi.new("double[4]", list(map(float, d_poly)))
|
|
|
|
cur_state = libmpc_py.ffi.new("state_t *")
|
|
cur_state[0].x = x_init
|
|
cur_state[0].y = y_init
|
|
cur_state[0].psi = psi_init
|
|
cur_state[0].delta = delta_init
|
|
|
|
# converge in no more than 20 iterations
|
|
for _ in range(20):
|
|
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, d_poly, l_prob, r_prob,
|
|
curvature_factor, v_ref, lane_width)
|
|
|
|
return mpc_solution
|
|
|
|
|
|
class TestLateralMpc(unittest.TestCase):
|
|
|
|
def _assert_null(self, sol, delta=1e-6):
|
|
for i in range(len(sol[0].y)):
|
|
self.assertAlmostEqual(sol[0].y[i], 0., delta=delta)
|
|
self.assertAlmostEqual(sol[0].psi[i], 0., delta=delta)
|
|
self.assertAlmostEqual(sol[0].delta[i], 0., delta=delta)
|
|
|
|
def _assert_simmetry(self, sol, delta=1e-6):
|
|
for i in range(len(sol[0][0].y)):
|
|
self.assertAlmostEqual(sol[0][0].y[i], -sol[1][0].y[i], delta=delta)
|
|
self.assertAlmostEqual(sol[0][0].psi[i], -sol[1][0].psi[i], delta=delta)
|
|
self.assertAlmostEqual(sol[0][0].delta[i], -sol[1][0].delta[i], delta=delta)
|
|
self.assertAlmostEqual(sol[0][0].x[i], sol[1][0].x[i], delta=delta)
|
|
|
|
def _assert_identity(self, sol, ignore_y=False, delta=1e-6):
|
|
for i in range(len(sol[0][0].y)):
|
|
self.assertAlmostEqual(sol[0][0].psi[i], sol[1][0].psi[i], delta=delta)
|
|
self.assertAlmostEqual(sol[0][0].delta[i], sol[1][0].delta[i], delta=delta)
|
|
self.assertAlmostEqual(sol[0][0].x[i], sol[1][0].x[i], delta=delta)
|
|
if not ignore_y:
|
|
self.assertAlmostEqual(sol[0][0].y[i], sol[1][0].y[i], delta=delta)
|
|
|
|
def test_straight(self):
|
|
sol = run_mpc()
|
|
self._assert_null(sol)
|
|
|
|
def test_y_symmetry(self):
|
|
sol = []
|
|
for y_init in [-0.5, 0.5]:
|
|
sol.append(run_mpc(y_init=y_init))
|
|
self._assert_simmetry(sol)
|
|
|
|
def test_poly_symmetry(self):
|
|
sol = []
|
|
for poly_shift in [-1., 1.]:
|
|
sol.append(run_mpc(poly_shift=poly_shift))
|
|
self._assert_simmetry(sol)
|
|
|
|
def test_delta_symmetry(self):
|
|
sol = []
|
|
for delta_init in [-0.1, 0.1]:
|
|
sol.append(run_mpc(delta_init=delta_init))
|
|
self._assert_simmetry(sol)
|
|
|
|
def test_psi_symmetry(self):
|
|
sol = []
|
|
for psi_init in [-0.1, 0.1]:
|
|
sol.append(run_mpc(psi_init=psi_init))
|
|
self._assert_simmetry(sol)
|
|
|
|
def test_prob_symmetry(self):
|
|
sol = []
|
|
lane_width = 3.
|
|
for r_prob in [0., 1.]:
|
|
sol.append(run_mpc(r_prob=r_prob, l_prob=1.-r_prob, lane_width=lane_width))
|
|
self._assert_simmetry(sol)
|
|
|
|
def test_y_shift_vs_poly_shift(self):
|
|
shift = 1.
|
|
sol = []
|
|
sol.append(run_mpc(y_init=shift))
|
|
sol.append(run_mpc(poly_shift=-shift))
|
|
# need larger delta than standard, otherwise it false triggers.
|
|
# this is acceptable because the 2 cases are very different from the optimizer standpoint
|
|
self._assert_identity(sol, ignore_y=True, delta=1e-5)
|
|
|
|
def test_no_overshoot(self):
|
|
y_init = 1.
|
|
sol = run_mpc(y_init=y_init)
|
|
for y in list(sol[0].y):
|
|
self.assertGreaterEqual(y_init, abs(y))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|
|
|