openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

121 lines
5.2 KiB

#!/usr/bin/env python3
from cereal import car
from selfdrive.car.subaru.values import CAR, PREGLOBAL_CARS
from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, gen_empty_fingerprint
from selfdrive.car.interfaces import CarInterfaceBase
class CarInterface(CarInterfaceBase):
@staticmethod
def get_params(candidate, fingerprint=gen_empty_fingerprint(), car_fw=None):
ret = CarInterfaceBase.get_std_params(candidate, fingerprint)
ret.carName = "subaru"
ret.radarOffCan = True
if candidate in PREGLOBAL_CARS:
ret.safetyModel = car.CarParams.SafetyModel.subaruLegacy
ret.enableBsm = 0x25c in fingerprint[0]
else:
ret.safetyModel = car.CarParams.SafetyModel.subaru
ret.enableBsm = 0x228 in fingerprint[0]
# Subaru port is a community feature, since we don't own one to test
ret.communityFeature = True
ret.dashcamOnly = candidate in PREGLOBAL_CARS
ret.steerRateCost = 0.7
ret.steerLimitTimer = 0.4
if candidate == CAR.ASCENT:
ret.mass = 2031. + STD_CARGO_KG
ret.wheelbase = 2.89
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 13.5
ret.steerActuatorDelay = 0.3 # end-to-end angle controller
ret.lateralTuning.pid.kf = 0.00003
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.0025, 0.1], [0.00025, 0.01]]
if candidate == CAR.IMPREZA:
ret.mass = 1568. + STD_CARGO_KG
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 15
ret.steerActuatorDelay = 0.4 # end-to-end angle controller
ret.lateralTuning.pid.kf = 0.00005
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2, 0.3], [0.02, 0.03]]
if candidate == CAR.FORESTER:
ret.mass = 1568. + STD_CARGO_KG
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 17 # learned, 14 stock
ret.steerActuatorDelay = 0.1
ret.lateralTuning.pid.kf = 0.000038
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.065, 0.2], [0.001, 0.015, 0.025]]
if candidate in [CAR.FORESTER_PREGLOBAL, CAR.OUTBACK_PREGLOBAL_2018]:
ret.safetyParam = 1 # Outback 2018-2019 and Forester have reversed driver torque signal
ret.mass = 1568 + STD_CARGO_KG
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 20 # learned, 14 stock
ret.steerActuatorDelay = 0.1
ret.lateralTuning.pid.kf = 0.000039
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 10., 20.], [0., 10., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.05, 0.2], [0.003, 0.018, 0.025]]
if candidate == CAR.LEGACY_PREGLOBAL:
ret.mass = 1568 + STD_CARGO_KG
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 12.5 # 14.5 stock
ret.steerActuatorDelay = 0.15
ret.lateralTuning.pid.kf = 0.00005
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.1, 0.2], [0.01, 0.02]]
if candidate == CAR.OUTBACK_PREGLOBAL:
ret.mass = 1568 + STD_CARGO_KG
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 20 # learned, 14 stock
ret.steerActuatorDelay = 0.1
ret.lateralTuning.pid.kf = 0.000039
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 10., 20.], [0., 10., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.05, 0.2], [0.003, 0.018, 0.025]]
# TODO: get actual value, for now starting with reasonable value for
# civic and scaling by mass and wheelbase
ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase)
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
# mass and CG position, so all cars will have approximately similar dyn behaviors
ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront)
return ret
# returns a car.CarState
def update(self, c, can_strings):
self.cp.update_strings(can_strings)
self.cp_cam.update_strings(can_strings)
ret = self.CS.update(self.cp, self.cp_cam)
ret.canValid = self.cp.can_valid and self.cp_cam.can_valid
ret.steeringRateLimited = self.CC.steer_rate_limited if self.CC is not None else False
ret.events = self.create_common_events(ret).to_msg()
self.CS.out = ret.as_reader()
return self.CS.out
def apply(self, c):
can_sends = self.CC.update(c.enabled, self.CS, self.frame, c.actuators,
c.cruiseControl.cancel, c.hudControl.visualAlert,
c.hudControl.leftLaneVisible, c.hudControl.rightLaneVisible, c.hudControl.leftLaneDepart, c.hudControl.rightLaneDepart)
self.frame += 1
return can_sends