You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							332 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							332 lines
						
					
					
						
							14 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import os
 | |
| import json
 | |
| import time
 | |
| import capnp
 | |
| import numpy as np
 | |
| from enum import Enum
 | |
| from collections import defaultdict
 | |
| 
 | |
| from cereal import log, messaging
 | |
| from cereal.services import SERVICE_LIST
 | |
| from openpilot.common.transformations.orientation import rot_from_euler
 | |
| from openpilot.common.realtime import config_realtime_process
 | |
| from openpilot.common.params import Params
 | |
| from openpilot.common.swaglog import cloudlog
 | |
| from openpilot.selfdrive.locationd.helpers import rotate_std
 | |
| from openpilot.selfdrive.locationd.models.pose_kf import PoseKalman, States
 | |
| from openpilot.selfdrive.locationd.models.constants import ObservationKind, GENERATED_DIR
 | |
| 
 | |
| ACCEL_SANITY_CHECK = 100.0  # m/s^2
 | |
| ROTATION_SANITY_CHECK = 10.0  # rad/s
 | |
| TRANS_SANITY_CHECK = 200.0  # m/s
 | |
| CALIB_RPY_SANITY_CHECK = 0.5  # rad (+- 30 deg)
 | |
| MIN_STD_SANITY_CHECK = 1e-5  # m or rad
 | |
| MAX_FILTER_REWIND_TIME = 0.8  # s
 | |
| MAX_SENSOR_TIME_DIFF = 0.1  # s
 | |
| YAWRATE_CROSS_ERR_CHECK_FACTOR = 30
 | |
| INPUT_INVALID_LIMIT = 2.0 # 1 (camodo) / 9 (sensor) bad input[s] ignored
 | |
| INPUT_INVALID_RECOVERY = 10.0 # ~10 secs to resume after exceeding allowed bad inputs by one
 | |
| POSENET_STD_INITIAL_VALUE = 10.0
 | |
| POSENET_STD_HIST_HALF = 20
 | |
| 
 | |
| 
 | |
| def calculate_invalid_input_decay(invalid_limit, recovery_time, frequency):
 | |
|   return (1 - 1 / (2 * invalid_limit)) ** (1 / (recovery_time * frequency))
 | |
| 
 | |
| 
 | |
| def init_xyz_measurement(measurement: capnp._DynamicStructBuilder, values: np.ndarray, stds: np.ndarray, valid: bool):
 | |
|   assert len(values) == len(stds) == 3
 | |
|   measurement.x, measurement.y, measurement.z = map(float, values)
 | |
|   measurement.xStd, measurement.yStd, measurement.zStd = map(float, stds)
 | |
|   measurement.valid = valid
 | |
| 
 | |
| 
 | |
| class HandleLogResult(Enum):
 | |
|   SUCCESS = 0
 | |
|   TIMING_INVALID = 1
 | |
|   INPUT_INVALID = 2
 | |
|   SENSOR_SOURCE_INVALID = 3
 | |
| 
 | |
| 
 | |
| class LocationEstimator:
 | |
|   def __init__(self, debug: bool):
 | |
|     self.kf = PoseKalman(GENERATED_DIR, MAX_FILTER_REWIND_TIME)
 | |
| 
 | |
|     self.debug = debug
 | |
| 
 | |
|     self.posenet_stds = np.array([POSENET_STD_INITIAL_VALUE] * (POSENET_STD_HIST_HALF * 2))
 | |
|     self.car_speed = 0.0
 | |
|     self.camodo_yawrate_distribution = np.array([0.0, 10.0])  # mean, std
 | |
|     self.device_from_calib = np.eye(3)
 | |
| 
 | |
|     obs_kinds = [ObservationKind.PHONE_ACCEL, ObservationKind.PHONE_GYRO, ObservationKind.CAMERA_ODO_ROTATION, ObservationKind.CAMERA_ODO_TRANSLATION]
 | |
|     self.observations = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
 | |
|     self.observation_errors = {kind: np.zeros(3, dtype=np.float32) for kind in obs_kinds}
 | |
| 
 | |
|   def reset(self, t: float, x_initial: np.ndarray = PoseKalman.initial_x, P_initial: np.ndarray = PoseKalman.initial_P):
 | |
|     self.kf.reset(t, x_initial, P_initial)
 | |
| 
 | |
|   def _validate_sensor_source(self, source: log.SensorEventData.SensorSource):
 | |
|     # some segments have two IMUs, ignore the second one
 | |
|     return source != log.SensorEventData.SensorSource.bmx055
 | |
| 
 | |
|   def _validate_sensor_time(self, sensor_time: float, t: float):
 | |
|     # ignore empty readings
 | |
|     if sensor_time == 0:
 | |
|       return False
 | |
| 
 | |
|     # sensor time and log time should be close
 | |
|     sensor_time_invalid = abs(sensor_time - t) > MAX_SENSOR_TIME_DIFF
 | |
|     if sensor_time_invalid:
 | |
|       cloudlog.warning("Sensor reading ignored, sensor timestamp more than 100ms off from log time")
 | |
|     return not sensor_time_invalid
 | |
| 
 | |
|   def _validate_timestamp(self, t: float):
 | |
|     kf_t = self.kf.t
 | |
|     invalid = not np.isnan(kf_t) and (kf_t - t) > MAX_FILTER_REWIND_TIME
 | |
|     if invalid:
 | |
|       cloudlog.warning("Observation timestamp is older than the max rewind threshold of the filter")
 | |
|     return not invalid
 | |
| 
 | |
|   def _finite_check(self, t: float, new_x: np.ndarray, new_P: np.ndarray):
 | |
|     all_finite = np.isfinite(new_x).all() and np.isfinite(new_P).all()
 | |
|     if not all_finite:
 | |
|       cloudlog.error("Non-finite values detected, kalman reset")
 | |
|       self.reset(t)
 | |
| 
 | |
|   def handle_log(self, t: float, which: str, msg: capnp._DynamicStructReader) -> HandleLogResult:
 | |
|     new_x, new_P = None, None
 | |
|     if which == "accelerometer" and msg.which() == "acceleration":
 | |
|       sensor_time = msg.timestamp * 1e-9
 | |
| 
 | |
|       if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
 | |
|         return HandleLogResult.TIMING_INVALID
 | |
| 
 | |
|       if not self._validate_sensor_source(msg.source):
 | |
|         return HandleLogResult.SENSOR_SOURCE_INVALID
 | |
| 
 | |
|       v = msg.acceleration.v
 | |
|       meas = np.array([-v[2], -v[1], -v[0]])
 | |
|       if np.linalg.norm(meas) >= ACCEL_SANITY_CHECK:
 | |
|         return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|       acc_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_ACCEL, meas)
 | |
|       if acc_res is not None:
 | |
|         _, new_x, _, new_P, _, _, (acc_err,), _, _ = acc_res
 | |
|         self.observation_errors[ObservationKind.PHONE_ACCEL] = np.array(acc_err)
 | |
|         self.observations[ObservationKind.PHONE_ACCEL] = meas
 | |
| 
 | |
|     elif which == "gyroscope" and msg.which() == "gyroUncalibrated":
 | |
|       sensor_time = msg.timestamp * 1e-9
 | |
| 
 | |
|       if not self._validate_sensor_time(sensor_time, t) or not self._validate_timestamp(sensor_time):
 | |
|         return HandleLogResult.TIMING_INVALID
 | |
| 
 | |
|       if not self._validate_sensor_source(msg.source):
 | |
|         return HandleLogResult.SENSOR_SOURCE_INVALID
 | |
| 
 | |
|       v = msg.gyroUncalibrated.v
 | |
|       meas = np.array([-v[2], -v[1], -v[0]])
 | |
| 
 | |
|       gyro_bias = self.kf.x[States.GYRO_BIAS]
 | |
|       gyro_camodo_yawrate_err = np.abs((meas[2] - gyro_bias[2]) - self.camodo_yawrate_distribution[0])
 | |
|       gyro_camodo_yawrate_err_threshold = YAWRATE_CROSS_ERR_CHECK_FACTOR * self.camodo_yawrate_distribution[1]
 | |
|       gyro_valid = gyro_camodo_yawrate_err < gyro_camodo_yawrate_err_threshold
 | |
| 
 | |
|       if np.linalg.norm(meas) >= ROTATION_SANITY_CHECK or not gyro_valid:
 | |
|         return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|       gyro_res = self.kf.predict_and_observe(sensor_time, ObservationKind.PHONE_GYRO, meas)
 | |
|       if gyro_res is not None:
 | |
|         _, new_x, _, new_P, _, _, (gyro_err,), _, _ = gyro_res
 | |
|         self.observation_errors[ObservationKind.PHONE_GYRO] = np.array(gyro_err)
 | |
|         self.observations[ObservationKind.PHONE_GYRO] = meas
 | |
| 
 | |
|     elif which == "carState":
 | |
|       self.car_speed = abs(msg.vEgo)
 | |
| 
 | |
|     elif which == "liveCalibration":
 | |
|       # Note that we use this message during calibration
 | |
|       if len(msg.rpyCalib) > 0:
 | |
|         calib = np.array(msg.rpyCalib)
 | |
|         if calib.min() < -CALIB_RPY_SANITY_CHECK or calib.max() > CALIB_RPY_SANITY_CHECK:
 | |
|           return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|         self.device_from_calib = rot_from_euler(calib)
 | |
| 
 | |
|     elif which == "cameraOdometry":
 | |
|       if not self._validate_timestamp(t):
 | |
|         return HandleLogResult.TIMING_INVALID
 | |
| 
 | |
|       rot_device = np.matmul(self.device_from_calib, np.array(msg.rot))
 | |
|       trans_device = np.matmul(self.device_from_calib, np.array(msg.trans))
 | |
| 
 | |
|       if np.linalg.norm(rot_device) > ROTATION_SANITY_CHECK or np.linalg.norm(trans_device) > TRANS_SANITY_CHECK:
 | |
|         return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|       rot_calib_std = np.array(msg.rotStd)
 | |
|       trans_calib_std = np.array(msg.transStd)
 | |
| 
 | |
|       if rot_calib_std.min() <= MIN_STD_SANITY_CHECK or trans_calib_std.min() <= MIN_STD_SANITY_CHECK:
 | |
|         return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|       if np.linalg.norm(rot_calib_std) > 10 * ROTATION_SANITY_CHECK or np.linalg.norm(trans_calib_std) > 10 * TRANS_SANITY_CHECK:
 | |
|         return HandleLogResult.INPUT_INVALID
 | |
| 
 | |
|       self.posenet_stds = np.roll(self.posenet_stds, -1)
 | |
|       self.posenet_stds[-1] = trans_calib_std[0]
 | |
| 
 | |
|       # Multiply by N to avoid to high certainty in kalman filter because of temporally correlated noise
 | |
|       rot_calib_std *= 10
 | |
|       trans_calib_std *= 2
 | |
| 
 | |
|       rot_device_std = rotate_std(self.device_from_calib, rot_calib_std)
 | |
|       trans_device_std = rotate_std(self.device_from_calib, trans_calib_std)
 | |
|       rot_device_noise = rot_device_std ** 2
 | |
|       trans_device_noise = trans_device_std ** 2
 | |
| 
 | |
|       cam_odo_rot_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_ROTATION, rot_device, rot_device_noise)
 | |
|       cam_odo_trans_res = self.kf.predict_and_observe(t, ObservationKind.CAMERA_ODO_TRANSLATION, trans_device, trans_device_noise)
 | |
|       self.camodo_yawrate_distribution =  np.array([rot_device[2], rot_device_std[2]])
 | |
|       if cam_odo_rot_res is not None:
 | |
|         _, new_x, _, new_P, _, _, (cam_odo_rot_err,), _, _ = cam_odo_rot_res
 | |
|         self.observation_errors[ObservationKind.CAMERA_ODO_ROTATION] = np.array(cam_odo_rot_err)
 | |
|         self.observations[ObservationKind.CAMERA_ODO_ROTATION] = rot_device
 | |
|       if cam_odo_trans_res is not None:
 | |
|         _, new_x, _, new_P, _, _, (cam_odo_trans_err,), _, _ = cam_odo_trans_res
 | |
|         self.observation_errors[ObservationKind.CAMERA_ODO_TRANSLATION] = np.array(cam_odo_trans_err)
 | |
|         self.observations[ObservationKind.CAMERA_ODO_TRANSLATION] = trans_device
 | |
| 
 | |
|     if new_x is not None and new_P is not None:
 | |
|       self._finite_check(t, new_x, new_P)
 | |
|     return HandleLogResult.SUCCESS
 | |
| 
 | |
|   def get_msg(self, sensors_valid: bool, inputs_valid: bool, filter_valid: bool):
 | |
|     state, cov = self.kf.x, self.kf.P
 | |
|     std = np.sqrt(np.diag(cov))
 | |
| 
 | |
|     orientation_ned, orientation_ned_std = state[States.NED_ORIENTATION], std[States.NED_ORIENTATION]
 | |
|     velocity_device, velocity_device_std = state[States.DEVICE_VELOCITY], std[States.DEVICE_VELOCITY]
 | |
|     angular_velocity_device, angular_velocity_device_std = state[States.ANGULAR_VELOCITY], std[States.ANGULAR_VELOCITY]
 | |
|     acceleration_device, acceleration_device_std = state[States.ACCELERATION], std[States.ACCELERATION]
 | |
| 
 | |
|     msg = messaging.new_message("livePose")
 | |
|     msg.valid = filter_valid
 | |
| 
 | |
|     livePose = msg.livePose
 | |
|     init_xyz_measurement(livePose.orientationNED, orientation_ned, orientation_ned_std, filter_valid)
 | |
|     init_xyz_measurement(livePose.velocityDevice, velocity_device, velocity_device_std, filter_valid)
 | |
|     init_xyz_measurement(livePose.angularVelocityDevice, angular_velocity_device, angular_velocity_device_std, filter_valid)
 | |
|     init_xyz_measurement(livePose.accelerationDevice, acceleration_device, acceleration_device_std, filter_valid)
 | |
|     if self.debug:
 | |
|       livePose.debugFilterState.value = state.tolist()
 | |
|       livePose.debugFilterState.std = std.tolist()
 | |
|       livePose.debugFilterState.valid = filter_valid
 | |
|       livePose.debugFilterState.observations = [
 | |
|         {'kind': k, 'value': self.observations[k].tolist(), 'error': self.observation_errors[k].tolist()}
 | |
|         for k in self.observations.keys()
 | |
|       ]
 | |
| 
 | |
|     old_mean = np.mean(self.posenet_stds[:POSENET_STD_HIST_HALF])
 | |
|     new_mean = np.mean(self.posenet_stds[POSENET_STD_HIST_HALF:])
 | |
|     std_spike = (new_mean / old_mean) > 4.0 and new_mean > 7.0
 | |
| 
 | |
|     livePose.inputsOK = inputs_valid
 | |
|     livePose.posenetOK = not std_spike or self.car_speed <= 5.0
 | |
|     livePose.sensorsOK = sensors_valid
 | |
| 
 | |
|     return msg
 | |
| 
 | |
| 
 | |
| def sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, simulation):
 | |
|   cur_time = time.monotonic()
 | |
|   for which, msgs in [("accelerometer", acc_msgs), ("gyroscope", gyro_msgs)]:
 | |
|     if len(msgs) > 0:
 | |
|       sensor_valid[which] = msgs[-1].valid
 | |
|       sensor_recv_time[which] = cur_time
 | |
| 
 | |
|     if not simulation:
 | |
|       sensor_alive[which] = (cur_time - sensor_recv_time[which]) < 0.1
 | |
|     else:
 | |
|       sensor_alive[which] = len(msgs) > 0
 | |
| 
 | |
|   return all(sensor_alive.values()) and all(sensor_valid.values())
 | |
| 
 | |
| 
 | |
| def main():
 | |
|   config_realtime_process([0, 1, 2, 3], 5)
 | |
| 
 | |
|   DEBUG = bool(int(os.getenv("DEBUG", "0")))
 | |
|   SIMULATION = bool(int(os.getenv("SIMULATION", "0")))
 | |
| 
 | |
|   pm = messaging.PubMaster(['livePose'])
 | |
|   sm = messaging.SubMaster(['carState', 'liveCalibration', 'cameraOdometry'], poll='cameraOdometry')
 | |
|   # separate sensor sockets for efficiency
 | |
|   sensor_sockets = [messaging.sub_sock(which, timeout=20) for which in ['accelerometer', 'gyroscope']]
 | |
|   sensor_alive, sensor_valid, sensor_recv_time = defaultdict(bool), defaultdict(bool), defaultdict(float)
 | |
| 
 | |
|   params = Params()
 | |
| 
 | |
|   estimator = LocationEstimator(DEBUG)
 | |
| 
 | |
|   filter_initialized = False
 | |
|   critcal_services = ["accelerometer", "gyroscope", "cameraOdometry"]
 | |
|   observation_input_invalid = defaultdict(int)
 | |
| 
 | |
|   input_invalid_limit = {s: round(INPUT_INVALID_LIMIT * (SERVICE_LIST[s].frequency / 20.)) for s in critcal_services}
 | |
|   input_invalid_threshold = {s: input_invalid_limit[s] - 0.5 for s in critcal_services}
 | |
|   input_invalid_decay = {s: calculate_invalid_input_decay(input_invalid_limit[s], INPUT_INVALID_RECOVERY, SERVICE_LIST[s].frequency) for s in critcal_services}
 | |
| 
 | |
|   initial_pose = params.get("LocationFilterInitialState")
 | |
|   if initial_pose is not None:
 | |
|     initial_pose = json.loads(initial_pose)
 | |
|     x_initial = np.array(initial_pose["x"], dtype=np.float64)
 | |
|     P_initial = np.diag(np.array(initial_pose["P"], dtype=np.float64))
 | |
|     estimator.reset(None, x_initial, P_initial)
 | |
| 
 | |
|   while True:
 | |
|     sm.update()
 | |
| 
 | |
|     acc_msgs, gyro_msgs = (messaging.drain_sock(sock) for sock in sensor_sockets)
 | |
| 
 | |
|     if filter_initialized:
 | |
|       msgs = []
 | |
|       for msg in acc_msgs + gyro_msgs:
 | |
|         t, valid, which, data = msg.logMonoTime, msg.valid, msg.which(), getattr(msg, msg.which())
 | |
|         msgs.append((t, valid, which, data))
 | |
|       for which, updated in sm.updated.items():
 | |
|         if not updated:
 | |
|           continue
 | |
|         t, valid, data = sm.logMonoTime[which], sm.valid[which], sm[which]
 | |
|         msgs.append((t, valid, which, data))
 | |
| 
 | |
|       for log_mono_time, valid, which, msg in sorted(msgs, key=lambda x: x[0]):
 | |
|         if valid:
 | |
|           t = log_mono_time * 1e-9
 | |
|           res = estimator.handle_log(t, which, msg)
 | |
|           if which not in critcal_services:
 | |
|             continue
 | |
| 
 | |
|           if res == HandleLogResult.TIMING_INVALID:
 | |
|             cloudlog.warning(f"Observation {which} ignored due to failed timing check")
 | |
|             observation_input_invalid[which] += 1
 | |
|           elif res == HandleLogResult.INPUT_INVALID:
 | |
|             cloudlog.warning(f"Observation {which} ignored due to failed sanity check")
 | |
|             observation_input_invalid[which] += 1
 | |
|           elif res == HandleLogResult.SUCCESS:
 | |
|             observation_input_invalid[which] *= input_invalid_decay[which]
 | |
|     else:
 | |
|       filter_initialized = sm.all_checks() and sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
 | |
| 
 | |
|     if sm.updated["cameraOdometry"]:
 | |
|       critical_service_inputs_valid = all(observation_input_invalid[s] < input_invalid_threshold[s] for s in critcal_services)
 | |
|       inputs_valid = sm.all_valid() and critical_service_inputs_valid
 | |
|       sensors_valid = sensor_all_checks(acc_msgs, gyro_msgs, sensor_valid, sensor_recv_time, sensor_alive, SIMULATION)
 | |
| 
 | |
|       msg = estimator.get_msg(sensors_valid, inputs_valid, filter_initialized)
 | |
|       pm.send("livePose", msg)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   main()
 | |
| 
 |