openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

76 lines
2.6 KiB

#!/usr/bin/env python3
import os
import sys
import numpy as np
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OMP_WAIT_POLICY"] = "PASSIVE"
import onnxruntime as ort # pylint: disable=import-error
ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
def read(sz, tf8=False):
dd = []
gt = 0
szof = 1 if tf8 else 4
while gt < sz * szof:
st = os.read(0, sz * szof - gt)
assert(len(st) > 0)
dd.append(st)
gt += len(st)
r = np.frombuffer(b''.join(dd), dtype=np.uint8 if tf8 else np.float32)
if tf8:
r = r / 255.
return r
def write(d):
os.write(1, d.tobytes())
def run_loop(m, tf8_input=False):
ishapes = [[1]+ii.shape[1:] for ii in m.get_inputs()]
keys = [x.name for x in m.get_inputs()]
itypes = [ORT_TYPES_TO_NP_TYPES[x.type] for x in m.get_inputs()]
# run once to initialize CUDA provider
if "CUDAExecutionProvider" in m.get_providers():
m.run(None, dict(zip(keys, [np.zeros(shp, dtype=itp) for shp, itp in zip(ishapes, itypes)])))
print("ready to run onnx model", keys, ishapes, file=sys.stderr)
while 1:
inputs = []
for k, shp, itp in zip(keys, ishapes, itypes):
ts = np.product(shp)
#print("reshaping %s with offset %d" % (str(shp), offset), file=sys.stderr)
inputs.append(read(ts, (k=='input_img' and tf8_input)).reshape(shp).astype(itp))
ret = m.run(None, dict(zip(keys, inputs)))
#print(ret, file=sys.stderr)
for r in ret:
write(r.astype(np.float32))
if __name__ == "__main__":
print(sys.argv, file=sys.stderr)
print("Onnx available providers: ", ort.get_available_providers(), file=sys.stderr)
options = ort.SessionOptions()
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
if 'OpenVINOExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
provider = 'OpenVINOExecutionProvider'
elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
options.intra_op_num_threads = 2
provider = 'CUDAExecutionProvider'
else:
options.intra_op_num_threads = 2
options.inter_op_num_threads = 8
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
provider = 'CPUExecutionProvider'
try:
print("Onnx selected provider: ", [provider], file=sys.stderr)
ort_session = ort.InferenceSession(sys.argv[1], options, providers=[provider])
print("Onnx using ", ort_session.get_providers(), file=sys.stderr)
run_loop(ort_session, tf8_input=("--use_tf8" in sys.argv))
except KeyboardInterrupt:
pass